Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278344

RESUMO

The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.


Assuntos
Placenta , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Placentação , Poliploidia , Trofoblastos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(41): 20598-20604, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548373

RESUMO

Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.


Assuntos
Bactérias/patogenicidade , Evolução Molecular , Imunidade Inata/imunologia , Larva/imunologia , Tribolium/imunologia , Animais , Bacillus thuringiensis/patogenicidade , Lactococcus lactis/patogenicidade , Larva/microbiologia , Seleção Genética , Transcriptoma , Tribolium/microbiologia
3.
Front Physiol ; 10: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837885

RESUMO

Immune priming, the increased chance to survive a secondary encounter with a pathogen, has been described for many invertebrate species, which lack the classical adaptive immune system of vertebrates. Priming can be specific even for closely related bacterial strains, last up to the entire lifespan of an individual, and in some species, it can also be transferred to the offspring and is then called transgenerational immune priming (TGIP). In the red flour beetle Tribolium castaneum, a pest of stored grains, TGIP has even been shown to be transferred paternally after injection of adult beetles with heat-killed Bacillus thuringiensis. Here we studied whether TGIP in T. castaneum is also transferred to the second filial generation, whether it can also occur after oral and injection priming of larvae and whether it has effects on offspring development. We found that paternal priming with B. thuringiensis does not only protect the first but also the second offspring generation. Also, fitness costs of the immune priming became apparent, when the first filial generation produced fewer offspring. Furthermore, we used two different routes of exposure to prime larvae, either by injecting them with heat-killed bacteria or orally feeding them B. thuringiensis spore culture supernatant. Neither of the parental larval priming methods led to any direct benefits regarding offspring resistance. However, the injections slowed down development of the injected individuals, while oral priming with both a pathogenic and a non-pathogenic strain of B. thuringiensis delayed offspring development. The long-lasting transgenerational nature of immune priming and its impact on offspring development indicate that potentially underlying epigenetic modifications might be stable over several generations. Therefore, this form of phenotypic plasticity might impact pest control and should be considered when using products of bacterial origin against insects.

4.
Front Immunol ; 8: 1811, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375546

RESUMO

The production of reactive oxygen species (ROS) is a normal consequence of the aerobic cell metabolism. Despite their high and potentially detrimental reactivity with various biomolecules, the endogenous production of ROS is a vital part of physiological, immunological, and molecular processes that contribute to fitness. The role of ROS in host-parasite interactions is frequently defined by their contribution to innate immunity as effectors, promoting parasite death during infections. In vertebrates, ROS and antioxidant system enzymes, such as superoxide dismutase (SOD) are also involved in acquired immune memory, where they are responsible for T-cell signalling, activation, proliferation, and viability. Based on recent findings, ROS are now also assumed to play a role in immune priming, i.e., a form of memory in invertebrates. In this study, the potential involvement of Cu,Zn SODs in immunity of the red flour beetle Tribolium castaneum is described for the first time, applying an approach that combines an in silico gene characterisation with an in vivo immune priming experiment using the Gram-positive entomopathogen Bacillus thuringiensis. We identified an unusually high number of three different transcripts for extracellular SOD and found that priming leads to a fine-tuned modulation of SOD expression, highlighting the potential of physiological co-adaptations for immune phenotypes.

5.
Theory Biosci ; 136(3-4): 89-98, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27995440

RESUMO

Are we in the midst of a paradigm change in biology and have animals and plants lost their individuality, i.e., are even so-called 'typical' organisms no longer organisms in their own right? Is the study of the holobiont-host plus its symbiotic microorganisms-no longer optional, but rather an obligatory path that must be taken for a comprehensive understanding of the ecology and evolution of the individual components that make up a holobiont? Or are associated microbes merely a component of their host's environment, and the holobiont concept is just a beautiful idea that does not add much or anything to our understanding of evolution? This article explores different aspects of the concept of the holobiont. We focus on the aspect of functional integration, a central holobiont property, which is only rarely considered thoroughly. We conclude that the holobiont comes in degrees, i.e., we regard the property of being a holobiont as a continuous trait that we term holobiontness, and that holobiontness is differentiated in several dimensions. Although the holobiont represents yet another level of selection (different from classical individual or group selection because it acts on a system that is composed of multiple species), it depends on the grade of functional integration whether or not the holobiont concept helps to cast light on the various degrees of interactions between symbiotic partners.


Assuntos
Adaptação Biológica , Evolução Biológica , Biologia/métodos , Ecologia/métodos , Animais , Antozoários , Drosophila , Fungos , Humanos , Paramecium , Fenótipo , Plantas , Rickettsia , Simbiose
6.
Zoology (Jena) ; 119(4): 254-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27350318

RESUMO

Immune priming has now been demonstrated in a wide range of invertebrate species. Studies testing this phenomenon largely differ in terms of experimental design, host-parasite combinations, agents used for priming, and in particular the degree of demonstrated specificity of the primed response. This review provides an overview of known and putative mechanisms underlying broad-spectrum and specific immune priming in arthropods. We focus on insects and particularly the red flour beetle Tribolium castaneum, where priming has been demonstrated within and across generations. We will also draw attention to the relevance of routes of priming and infection, which can occur septically and orally, with largely differing physiology. For oral priming, an involvement of gut microbiota was demonstrated in mosquitoes and flour beetles. Generally, a primed state could result from long-lasting immune activation or a form of memory that does not entail lingering immune components. Moreover, the primed state could also be of a qualitatively different kind than the challenge response. Finally, we will consider that there should be natural variation in priming capability, and therefore a possibility to study this trait with experimental evolution approaches.


Assuntos
Besouros/imunologia , Besouros/fisiologia , Animais , Evolução Biológica , Besouros/genética , Regulação da Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA