Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cancer Cell Int ; 23(1): 38, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843002

RESUMO

BACKGROUND: Arginine auxotrophy constitutes a shortcoming for ~ 30% of glioblastoma multiforme (GBM). Indeed, arginine-depleting therapy using arginine deiminase from Streptococcus pyogenes (SpyADI) has proven activity against GBM in preclinical studies. The good safety profile of SpyADI renders this agent an ideal combination partner for cytostatic therapy. METHODS: In this study, we combined the antineoplastic antibiotic Mithramycin A (MitA) with SpyADI to boost single-agent activity and analyzed underlying response mechanisms in-depth. RESULTS: MitA monotherapy induced a time- and dose-dependent cytotoxicity in eight patient-derived GBM cell lines and had a radiosensitizing effect in all but one cell line. Combination treatment boosted the effects of the monotherapy in 2D- and 3D models. The simultaneous approach was superior to the sequential application and significantly impaired colony formation after repetitive treatment. MitA monotherapy significantly inhibited GBM invasiveness. However, this effect was not enhanced in the combination. Functional analysis identified SpyADI-triggered senescence induction accompanied by increased mitochondrial membrane polarization upon mono- and combination therapy. In HROG63, induction of lysosomes was seen after both monotherapies, indicative of autophagy. These cells seemed swollen and had a more pronounced cortically formed cytoskeleton. Also, cytochrome C and endoplasmatic reticulum-stress-associated proteins ATF4 and Calnexin were enhanced in the combination, contributing to apoptosis. Notably, no significant increases in glioma-stemness marker were seen. CONCLUSIONS: Therapeutic utilization of a metabolic defect in GBM along with cytostatic therapy provides a novel combination approach. Whether this SpyADI/MitA regimen will provide a safe alternative to combat GBM, will have to be addressed in subsequent (pre-)clinical trials.

2.
Appl Microbiol Biotechnol ; 106(1): 261-271, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34910240

RESUMO

Arginine auxotrophy is a metabolic defect that renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase (ADI) from Streptococcus pyogenes (SpyADI). Previously, we confirmed SpyADI susceptibility on patient-derived glioblastoma multiforme (GBM) models in vitro and in vivo. For application in patients, serum half-life of the enzyme has to be increased and immunogenicity needs to be reduced. For this purpose, we conjugated the S. pyogenes-derived SpyADI with 20 kDa polyethylene glycol (PEG20) moieties, achieving a PEGylation of seven to eight of the 26 accessible primary amines of the SpyADI. The PEGylation reduced the overall activity of the enzyme by about 50% without affecting the Michaelis constant for arginine. PEGylation did not increase serum stability of SpyADI in vitro, but led to a longer-lasting reduction of plasma arginine levels in mice. Furthermore, SpyADI-PEG20 showed a higher antitumoral capacity towards GBM cells in vitro than the native enzyme. KEY POINTS: • PEGylation has no effect on the affinity of SpyADI for arginine • PEGylation increases the antitumoral effects of SpyADI on GBM in vitro • PEGylation prolongs plasma arginine depletion by SpyADI in mice.


Assuntos
Glioblastoma , Streptococcus pyogenes , Animais , Arginina , Humanos , Hidrolases , Camundongos
3.
Cell Physiol Biochem ; 51(2): 854-870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30466103

RESUMO

Arginine auxotrophy occurs in certain tumor types and is usually caused by the silencing of argininosuccinate synthetase 1 or arginine lyase genes. Such tumors are often associated with an intrinsic chemoresistance and thus a poor prognosis. Arginine auxotrophy however renders these tumors vulnerable to treatment with arginine-degrading enzymes. Among the most frequently applied arginine-degrading agents are bacterial arginine deiminases (ADI). The anti-cancerous effects of ADI derived from different bacteria were extensively studied in numerous preclinical cell culture and xenograft models. Mycoplasma-derived ADI-PEG20 is most commonly used and is currently under clinical investigation as a single agent therapeutic as well as in combination with different antineoplastic compounds. Mechanistically, ADI is capable of reducing metabolic activity in tumor cells, contributing to autophagy, senescence and apoptosis in arginine auxotrophic cells. Although clinical trials are promising, the resistance development upon initial treatment response is an increasing challenge. Furthermore, interference of ADI with the tumor microenvironment is poorly understood. In the present review, we outline recent experimental ADI-based treatment approaches and their translation into the clinic. Furthermore, we summarize new insights into the molecular mechanisms underlying the anti-cancer effects of ADI that might facilitate the refinement of ADI-based combination therapy approaches.


Assuntos
Arginina/metabolismo , Hidrolases/metabolismo , Arginase/genética , Arginase/metabolismo , Arginase/uso terapêutico , Humanos , Hidrolases/genética , Hidrolases/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/uso terapêutico , Microambiente Tumoral
4.
Exp Cell Res ; 350(1): 115-122, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865937

RESUMO

Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Tecido Adiposo/citologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , NF-kappa B/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/efeitos dos fármacos
5.
Exp Cell Res ; 342(2): 95-103, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26997527

RESUMO

Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC.


Assuntos
Quimiotaxia/imunologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/fisiologia , Ácidos Teicoicos/farmacologia , Gordura Abdominal/citologia , Adulto , Idoso , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Infect Dis ; 214(12): 1876-1883, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683816

RESUMO

BACKGROUND: Neutrophils have been proposed as important contributors to the hyperinflammatory responses that are associated with severe invasive Streptococcus pyogenes infections. In particular, streptococcal surface proteins have been implicated as potent neutrophil activators. Here we explore the impact of streptococcus-secreted factors on neutrophil activation and degranulation. METHODS: Primary human neutrophils were exposed to supernatants prepared from cultures of invasive S. pyogenes strains of varying serotypes in the stationary growth phase. Neutrophil activation was assessed by measurement of secreted resistin, an azurophilic granule marker, and by determination of the secretome profile, using mass spectrometry. RESULTS: Marked variation in resistin release and the neutrophil secretome profile were observed following exposure to different strains. A high resistin response was triggered exclusively by SpeB-negative strains, suggesting that at least 1 stimulatory factor is susceptible to SpeB proteolytic degradation. Further analysis, including proteomics and stimulation analyses, identified phosphoglycerate kinase as a stimulatory factor for neutrophils. CONCLUSIONS: Taken together, results of this study reveal a novel secreted streptococcal factor that, in the absence of SpeB, can trigger neutrophil activation and degranulation. This finding is of interest in light of reports of hypervirulent SpeB-negative S. pyogenes variants present during invasive infections.


Assuntos
Degranulação Celular , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosfoglicerato Quinase/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/imunologia , Células Cultivadas , Voluntários Saudáveis , Humanos , Espectrometria de Massas , Resistina/análise
7.
J Biol Chem ; 288(29): 21295-21306, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23720742

RESUMO

Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.


Assuntos
Bactérias/enzimologia , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Isoenzimas/metabolismo , Cinética , Lactato Desidrogenases/química , Lactato Desidrogenases/isolamento & purificação , Modelos Biológicos , Fosfatos/farmacologia , Cloreto de Sódio/farmacologia , Eletricidade Estática
8.
Curr Top Microbiol Immunol ; 368: 111-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23242855

RESUMO

Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.


Assuntos
Regulação Bacteriana da Expressão Gênica , Streptococcus/patogenicidade , Animais , Fímbrias Bacterianas/genética , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Percepção de Quorum , Pequeno RNA não Traduzido/fisiologia , Transdução de Sinais/fisiologia , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus pyogenes/genética , Transcrição Gênica , Virulência/genética
9.
Exp Cell Res ; 319(18): 2883-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988607

RESUMO

Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.


Assuntos
Adipogenia/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais , Osteogênese/efeitos dos fármacos , Tecido Adiposo/citologia , Adjuvantes Imunológicos/farmacologia , Fosfatase Alcalina/metabolismo , Bactérias/química , Bactérias/metabolismo , Aderência Bacteriana , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura Alta , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/microbiologia , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Ácidos Teicoicos/farmacologia
10.
J Biotechnol ; 392: 109-117, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996920

RESUMO

Enterococcus faecalis is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, E. faecalis strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of E. faecalis ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of E. faecalis ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic E. faecalis V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1 % smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40 % lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.

11.
Appl Environ Microbiol ; 79(4): 1265-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241973

RESUMO

Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Sistema Respiratório/microbiologia , Streptococcus/fisiologia , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Streptococcus/crescimento & desenvolvimento , Streptococcus/isolamento & purificação
12.
Protein Expr Purif ; 91(1): 61-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867361

RESUMO

Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07µmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10µmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively.


Assuntos
Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Escherichia coli/genética , Genes Bacterianos , Concentração de Íons de Hidrogênio , Hidrolases/química , Hidrolases/genética , Cinética , Dados de Sequência Molecular , Óperon , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Streptococcus pyogenes/genética , Temperatura
13.
J Bacteriol ; 194(14): 3618-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544273

RESUMO

Streptococcus pyogenes (group A streptococcus [GAS]) is a highly virulent Gram-positive bacterium. For successful infection, GAS expresses many virulence factors, which are clustered together with transcriptional regulators in distinct genomic regions. Ralp3 is a central regulator of the ERES region. In this study, we investigated the role of Ralp3 in GAS M49 pathogenesis. The inactivation of Ralp3 resulted in reduced attachment to and internalization into human keratinocytes. The Δralp3 mutant failed to survive in human blood and serum, and the hyaluronic acid capsule was slightly decreased. In addition, the mutant showed a lower binding capacity to human plasminogen, and the SpeB activity was significantly decreased. Complementation of the Δralp3 mutant restored the wild-type phenotype. The transcriptome and quantitative reverse transcription-PCR analysis of the serotype M49 GAS strain and its isogenic Δralp3 mutant identified 16 genes as upregulated, and 43 genes were found to be downregulated. Among the downregulated genes, there were open reading frames encoding proteins involved in metabolism (e.g., both lac operons and the fru operon), genes encoding lantibiotics (e.g., the putative salivaricin operon), and ORFs encoding virulence factors (such as the whole Mga core regulon and further genes under Mga control). In summary, the ERES region regulator Ralp3 is an important serotype-specific transcriptional regulator for virulence and metabolic control.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Ácido Hialurônico , Mutação , Fenótipo , RNA Bacteriano , Transcriptoma , Virulência , Fatores de Virulência/genética
14.
J Biol Chem ; 286(24): 21612-22, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21521694

RESUMO

The entry into epithelial cells and the prevention of primary immune responses are a prerequisite for a successful colonization and subsequent infection of the human host by Streptococcus pyogenes (group A streptococci, GAS). Here, we demonstrate that interaction of GAS with plasminogen promotes an integrin-mediated internalization of the bacteria into keratinocytes, which is independent from the serine protease activity of potentially generated plasmin. α(1)ß(1)- and α(5)ß(1)-integrins were identified as the major keratinocyte receptors involved in this process. Inhibition of integrin-linked kinase (ILK) expression by siRNA silencing or blocking of PI3K and Akt with specific inhibitors, reduced the GAS M49-plasminogen/plasmin-mediated invasion of keratinocytes. In addition, blocking of actin polymerization significantly reduced GAS internalization into keratinocytes. Altogether, these results provide a first model of plasminogen-mediated GAS invasion into keratinocytes. Furthermore, we demonstrate that plasminogen binding protects the bacteria against macrophage killing.


Assuntos
Bacteriocinas/metabolismo , Integrinas/metabolismo , Queratinócitos/metabolismo , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Streptococcus pyogenes/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Fibrinolisina/metabolismo , Humanos , Integrina alfa1beta1/metabolismo , Integrina alfa5beta1/metabolismo , Queratinócitos/microbiologia , Macrófagos/microbiologia , Modelos Biológicos , Modelos Genéticos , Ligação Proteica
15.
Cell Death Dis ; 13(6): 555, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717443

RESUMO

Constitutive activation of cyclin-dependent kinases (CDKs) or arginine auxotrophy are hallmarks of Glioblastoma multiforme (GBM). The latter metabolic defect renders tumor cells vulnerable to arginine-depleting substances, such as arginine deiminase from Streptococcus pyogenes (SpyADI). Previously, we confirmed the susceptibility of patient-derived GBM cells towards SpyADI as well as CDK inhibitors (CDKis). To improve therapeutic effects, we here applied a combined approach based on SpyADI and CDKis (dinaciclib, abemaciclib). Three arginine-auxotrophic patient-derived GBM lines with different molecular characteristics were cultured in 2D and 3D and effects of this combined SpyADI/CDKi approach were analyzed in-depth. All CDKi/SpyADI combinations yielded synergistic antitumoral effects, especially when given sequentially (SEQ), i.e., CDKi in first-line and most pronounced in the 3D models. SEQ application demonstrated impaired cell proliferation, invasiveness, and viability. Mitochondrial impairment was demonstrated by increasing mitochondrial membrane potential and decreasing oxygen consumption rate and extracellular acidification rate after SpyADI/abemaciclib monotherapy or its combination regimens. The combined treatment even induced autophagy in target cells (abemaciclib/SpyADI > dinaciclib/SpyADI). By contrast, the unfolded protein response and p53/p21 induced senescence played a minor role. Transmission electron microscopy confirmed damaged mitochondria and endoplasmic reticulum together with increased vacuolization under CDKi mono- and combination therapy. SEQ-abemaciclib/SpyADI treatment suppressed the DSB repair system via NHEJ and HR, whereas SEQ-dinaciclib/SpyADI treatment increased γ-H2AX accumulation and induced Rad51/Ku80. The latter combination also activated the stress sensor GADD45 and ß-catenin antagonist AXIN2 and induced expression changes of genes involved in cellular/cytoskeletal integrity. This study highlights the strong antitumoral potential of a combined arginine deprivation and CDK inhibition approach via complex effects on mitochondrial dysfunction, invasiveness as well as DNA-damage response. This provides a good starting point for further in vitro and in vivo proof-of-concept studies to move forward with this strategy.


Assuntos
Glioblastoma , Arginina/metabolismo , Autofagia , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes , Glioblastoma/genética , Humanos
16.
Front Microbiol ; 13: 802427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242116

RESUMO

The strict human pathogen Streptococcus pyogenes causes infections of varying severity, ranging from self-limiting suppurative infections to life-threatening diseases like necrotizing fasciitis or streptococcal toxic shock syndrome. Here, we show that the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase GapN is an essential enzyme for S. pyogenes. GapN converts glyceraldehyde 3-phosphate into 3-phosphoglycerate coupled to the reduction of NADP to NADPH. The knock-down of gapN by antisense peptide nucleic acids (asPNA) significantly reduces viable bacterial counts of S. pyogenes laboratory and macrolide-resistant clinical strains in vitro. As S. pyogenes lacks the oxidative part of the pentose phosphate pathway, GapN appears to be the major NADPH source for the bacterium. Accordingly, other streptococci that carry a complete pentose phosphate pathway are not prone to asPNA-based gapN knock-down. Determination of the crystal structure of the S. pyogenes GapN apo-enzyme revealed an unusual cis-peptide in proximity to the catalytic binding site. Furthermore, using a structural modeling approach, we correctly predicted competitive inhibition of S. pyogenes GapN by erythrose 4-phosphate, indicating that our structural model can be used for in silico screening of specific GapN inhibitors. In conclusion, the data provided here reveal that GapN is a potential target for antimicrobial substances that selectively kill S. pyogenes and other streptococci that lack the oxidative part of the pentose phosphate pathway.

17.
Microbiol Spectr ; 10(2): e0240021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234500

RESUMO

Lactic acid bacteria (LAB) play a significant role in biotechnology, e.g., food industry and also in human health. Many LAB genera have developed a multidrug resistance in the past few years, causing a serious problem in controlling hospital germs worldwide. Enterococcus faecalis accounts for a large part of the human infections caused by LABs. Therefore, studying its adaptive metabolism under various environmental conditions is particularly important to promote the development of new therapeutic approaches. In this study, we investigated the effect of glutamine auxotrophy (ΔglnA mutant) on metabolic and proteomic adaptations of E. faecalis in response to a changing pH in its environment. Changing pH values are part of the organism's natural environment in the human body and play a role in the food industry. We compared the results with those of the wildtype. Using a genome-scale metabolic model constrained by metabolic and proteomic data, our integrative method allows us to understand the bigger picture of the adaptation strategies of this bacterium. The study showed that energy demand is the decisive factor in adapting to a new environmental pH. The energy demand of the mutant was higher at all conditions. It has been reported that ΔglnA mutants of bacteria are energetically less effective. With the aid of our data and model we are able to explain this phenomenon as a consequence of a failure to regulate glutamine uptake and the costs for the import of glutamine and the export of ammonium. Methodologically, it became apparent that taking into account the nonspecificity of amino acid transporters is important for reproducing metabolic changes with genome-scale models because it affects energy balance. IMPORTANCE The integration of new pH-dependent experimental data on metabolic uptake and release fluxes, as well as of proteome data with a genome-scale computational model of a glutamine synthetase mutant of E. faecalis is used and compared with those of the wildtype to understand why glutamine auxotrophy results in a less efficient metabolism and how-in comparison with the wildtype-the glutamine synthetase knockout impacts metabolic adjustments during acidification or simply exposure to lower pH. We show that forced glutamine auxotrophy causes more energy demand and that this is likely due to a disregulated glutamine uptake. Proteome changes during acidification observed for the mutant resemble those of the wildtype with the exception of glycolysis-related genes, as the mutant is already energetically stressed at a higher pH and the respective proteome changes were in effect.


Assuntos
Enterococcus faecalis , Glutamato-Amônia Ligase , Enterococcus faecalis/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Humanos , Proteoma/metabolismo , Proteoma/farmacologia , Proteômica
18.
J Biol Chem ; 285(14): 10353-61, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145247

RESUMO

The myosin cross-reactive antigen (MCRA) protein family is highly conserved among different bacterial species ranging from Gram-positive to Gram-negative bacteria. Besides their ubiquitous occurrence, knowledge about the biochemical and physiological function of MCRA proteins is scarce. Here, we show that MCRA protein from Streptococcus pyogenes M49 is a FAD enzyme, which acts as hydratase on (9Z)- and (12Z)-double bonds of C-16, C-18 non-esterified fatty acids. Products are 10-hydroxy and 10,13-dihydroxy fatty acids. Kinetic analysis suggests that FAD rather stabilizes the active conformation of the enzyme and is not directly involved in catalysis. Analysis of S. pyogenes M49 grown in the presence of either oleic or linoleic acid showed that 10-hydroxy and 10,13-dihydroxy derivatives were the only products. No further metabolism of these hydroxy fatty acids was detected. Deletion of the hydratase gene caused a 2-fold decrease in minimum inhibitory concentration against oleic acid but increased survival of the mutant strain in whole blood. Adherence and internalization properties to human keratinocytes were reduced in comparison with the wild type. Based on these results, we conclude that the previously identified MCRA protein can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, that plays a role in virulence of at least S. pyogenes M49.


Assuntos
Hidroliases/genética , Hidroliases/metabolismo , Miosinas/metabolismo , Ácido Oleico/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência/fisiologia , Sequência de Aminoácidos , Sobrevivência Celular , Reações Cruzadas , Flavina-Adenina Dinucleotídeo/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Queratinócitos/microbiologia , Dados de Sequência Molecular , Mutação/genética , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética
19.
Appl Environ Microbiol ; 77(2): 612-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097579

RESUMO

Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y(ATP) (cell mass produced per mole of ATP). The pH that showed the highest Y(ATP) corresponded to the pH of the natural habitat of the organisms.


Assuntos
Trifosfato de Adenosina/metabolismo , Enterococcus faecalis/enzimologia , L-Lactato Desidrogenase/deficiência , Ácido Láctico/metabolismo , Lactococcus lactis/enzimologia , Deleção de Sequência , Streptococcus pyogenes/enzimologia , Biomassa , Carbono/metabolismo , Meios de Cultura/química , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Concentração de Íons de Hidrogênio , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/metabolismo
20.
J Biotechnol ; 327: 54-63, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33309962

RESUMO

In-depth understanding of microbial growth is crucial for the development of new advances in biotechnology and for combating microbial pathogens. Condition-specific proteome expression is central to microbial physiology and growth. A multitude of processes are dependent on the protein expression, thus, whole-cell analysis of microbial metabolism using genome-scale metabolic models is an attractive toolset to investigate the behaviour of microorganisms and their communities. However, genome-scale models that incorporate macromolecular expression are still inhibitory complex: the conceptual and computational complexity of these models severely limits their potential applications. In the need for alternatives, here we revisit some of the previous attempts to create genome-scale models of metabolism and macromolecular expression to develop a novel framework for integrating protein abundance and turnover costs to conventional genome-scale models. We show that such a model of Escherichia coli successfully reproduces experimentally determined adaptations of metabolism in a growth condition-dependent manner. Moreover, the model can be used as means of investigating underutilization of the protein machinery among different growth settings. Notably, we obtained strongly improved predictions of flux distributions, considering the costs of protein translation explicitly. This finding in turn suggests protein translation being the main regulation hub for cellular growth.


Assuntos
Escherichia coli , Modelos Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA