Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 26(12): 123113, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28039987

RESUMO

An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.


Assuntos
Doença de Parkinson , Gânglios da Base , Ritmo beta , Globo Pálido , Humanos , Núcleo Subtalâmico
2.
Front Comput Neurosci ; 17: 1143323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583894

RESUMO

The dynamical properties of the brain and the dynamics of the body strongly influence one another. Their interaction generates complex adaptive behavior. While a wide variety of simulation tools exist for neural dynamics or biomechanics separately, there are few options for integrated brain-body modeling. Here, we provide a tutorial to demonstrate how the widely-used NEURON simulation platform can support integrated neuromechanical modeling. As a first step toward incorporating biomechanics into a NEURON simulation, we provide a framework for integrating inputs from a "periphery" and outputs to that periphery. In other words, "body" dynamics are driven in part by "brain" variables, such as voltages or firing rates, and "brain" dynamics are influenced by "body" variables through sensory feedback. To couple the "brain" and "body" components, we use NEURON's pointer construct to share information between "brain" and "body" modules. This approach allows separate specification of brain and body dynamics and code reuse. Though simple in concept, the use of pointers can be challenging due to a complicated syntax and several different programming options. In this paper, we present five different computational models, with increasing levels of complexity, to demonstrate the concepts of code modularity using pointers and the integration of neural and biomechanical modeling within NEURON. The models include: (1) a neuromuscular model of calcium dynamics and muscle force, (2) a neuromechanical, closed-loop model of a half-center oscillator coupled to a rudimentary motor system, (3) a closed-loop model of neural control for respiration, (4) a pedagogical model of a non-smooth "brain/body" system, and (5) a closed-loop model of feeding behavior in the sea hare Aplysia californica that incorporates biologically-motivated non-smooth dynamics. This tutorial illustrates how NEURON can be integrated with a broad range of neuromechanical models. Code available at: https://github.com/fietkiewicz/PointerBuilder.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37015628

RESUMO

Variations in brain activity patterns reveal impairments of motor and cognitive functions in the human brain. Electroencephalogram (EEG) microstates embody brain activity patterns at a microscopic time scale. However, current microstate analysis method can only recognize less than 90% of EEG signals per subject, which severely limits the characterization of dynamic brain activity. As an application to early Parkinson's disease (PD), we propose an enhanced EEG microstate recognition framework based on deep neural networks, which yields recognition rates from 90% to 99%, as accompanied by a strong anti-artifact property. Additionally, gradient-weighted class activation mapping, as a visualization technique, is employed to locate the activated functional brain regions of each microstate class. We find that each microstate class corresponds to a particular activated brain region. Finally, based on the improved identification of microstate sequences, we explore the EEG microstate characteristics and their clinical associations. We show that the decreased occurrences of a particular microstate class reflect the degree of cognitive decline in early PD, and reduced transitions between certain microstates suggest injury in motor-related brain regions. The novel EEG microstate recognition framework paves the way to revealing more effective biomarkers for early PD.

4.
IEEE Trans Cybern ; 51(10): 5046-5056, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31295136

RESUMO

Suppression of excessively synchronous beta frequency (12-35 Hz) oscillatory activity in the basal ganglia is believed to correlate with the alleviation of hypokinetic motor symptoms of the Parkinson's disease. Delayed feedback is an effective strategy to interrupt the synchronization and has been used in the design of closed-loop neuromodulation methods computationally. Although tremendous efforts in this are being made by optimizing delayed feedback algorithm and stimulation waveforms, there are still remaining problems in the selection of effective parameters in the delayed feedback control schemes. In most delayed feedback neuromodulation strategies, the stimulation signal is obtained from the local field potential (LFP) of the excitatory subthalamic nucleus (STN) neurons and then is administered back to STN itself only. The inhibitory external globus pallidus (GPe) nucleus in the excitatory-inhibitory STN-GPe reciprocal network has not been involved in the design of the delayed feedback control strategies. Thus, considering the role of GPe, this paper proposes three schemes involving GPe in the design of the delayed feedback strategies and compared their effectiveness to the traditional paradigm using STN only. Based on a neural mass model of STN-GPe network having capability of simulating the LFP directly, the proposed stimulation strategies are tested and compared. Our simulation results show that the four types of delayed feedback control schemes are all effective, even if with a simple linear delayed feedback algorithm. But the three new control strategies we propose here further improve the control performance by enlarging the oscillatory suppression space and reducing the energy expenditure, suggesting that they may be more effective in applications. This paper may guide a new approach to optimize the closed-loop deep brain stimulation treatment to alleviate the Parkinsonian state by retargeting the measurement and stimulation nucleus.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Gânglios da Base , Retroalimentação , Globo Pálido , Humanos , Doença de Parkinson/terapia
5.
Cogn Neurodyn ; 15(6): 1157-1167, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34790273

RESUMO

Cortical information has great importance to reflect the deep brain stimulation (DBS) effects for Parkinson's disease patients. Using cortical activities to feedback is an available closed-loop idea for DBS. Previous studies have demonstrated the pathological beta (12-35 Hz) cortical oscillations can be suppressed by appropriate DBS settings. Thus, here we propose to close the loop of DBS based on the beta oscillations in cortex. By modify the cortico-basal ganglia-thalamic neural loop model, more biologically realistic underlying the Parkinsonian phenomenon is approached. Stimulation results show the proposed closed-loop DBS strategy using cortical beta oscillation as feedback information has more profound roles in alleviating the pathological neural abnormality than the traditional open-loop DBS. Additionally, we compare the stimulation effects with subthalamic nucleus feedback strategy. It is shown that using cortical beta information as the feedback signals can further enlarge the control parameter space based on proportional-integral control structure with a lower energy expenditure. This work may pave the way to optimizing the DBS effects in a closed-loop arrangement.

6.
Neural Netw ; 123: 381-392, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911186

RESUMO

Excessive neural synchronization in the cortico-basal ganglia-thalamocortical circuits in the beta (ß) frequency range (12-35 Hz) is closely associated with dopamine depletion in Parkinson's disease (PD) and correlated with movement impairments, but the neural basis remains unclear. In this work, we establish a double-oscillator neural mass model for the cortico-basal ganglia-thalamocortical closed-loop system and explore the impacts of dopamine depletion induced changes in coupling connections within or between the two oscillators on neural activities within the loop. Spectral analysis of the neural mass activities revealed that the power and frequency of their principal components are greatly dependent on the coupling strengths between nuclei. We found that the increased intra-coupling in the basal ganglia-thalamic (BG-Th) oscillator contributes to increased oscillations in the lower ß frequency band (12-25 Hz), while increased intra-coupling in the cortical oscillator mainly contributes to increased oscillations in the upper ß frequency band (26-35 Hz). Interestingly, pathological upper ß oscillations in the cortical oscillator may be another origin of the lower ß oscillations in the BG-Th oscillator, in addition to increased intra-coupling strength within the BG-Th network. Lower ß oscillations in the BG-Th oscillator can also change the dominant oscillation frequency of a cortical nucleus from the upper to the lower ß band. Thus, this work may pave the way towards revealing a possible neural basis underlying the Parkinsonian state.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta , Córtex Cerebral/fisiopatologia , Modelos Neurológicos , Doença de Parkinson/fisiopatologia , Tálamo/fisiopatologia , Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Humanos , Redes Neurais de Computação , Tálamo/fisiologia
7.
IEEE Trans Cybern ; 49(10): 3655-3664, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29994689

RESUMO

The benefit of noise in improving the basal ganglia (BG) dysfunctions, especially Parkinsonian state, is explored in this paper. High frequency (≥ 100 Hz) deep brain stimulation (DBS), as a clinical effective stimulation method, has compelling and fantastic results in alleviating the motor symptoms of Parkinson's disease (PD). However, the mechanism of DBS is still unclear. And the selection of the DBS waveform parameters faces great challenges to further optimize the stimulation effects and to reduce its energy expenditure. Considering that the desynchronization of the BG neuronal activities is benefited from the forced high frequency regular spikes driven by standard high frequency DBS, we expect to explore a novel stimulation method that has capability of restoring the BG physiological firing patterns without introducing artificial high-frequency fires. In this paper, a colored noise stimulation is used as a neuromodulation method to disrupt the firing patterns of the pathological neuronal activities. A computational model of the BG that exhibits the intrinsic properties of the BG neurons and their interactions with the thalamic (Th) cells is employed. Based on the model, we investigate the effects of noise stimulation and explore the impacts of the noise stimulation parameters on both relay reliability of the Th neurons and energy expenditure of the stimulation. By comparison, it can be found that noise stimulation does not entrain the network to an artificial high-frequency firing state, but induces the pathological increased synchronous activities back to a normal physiological level. Moreover, besides the capability of restoring the neuronal state, the benefits of the noise also include its balanced waveform to avert potential tissue or electrode damage and its ability to reduce the energy expenditure to 50% less than that of the standard DBS, when the noise stimulation has low frequency (≤ 100 Hz) and appropriate intensity. Thus, the exploration of the optimal noise-induced improvement of the BG dysfunction is of great significance in treating symptoms of neurological disorders such as PD.


Assuntos
Gânglios da Base/fisiopatologia , Simulação por Computador , Modelos Neurológicos , Doença de Parkinson/fisiopatologia , Humanos , Neurônios/fisiologia , Ruído , Estimulação Física
8.
IEEE Trans Cybern ; 49(7): 2490-2503, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29993922

RESUMO

The investigation of the human intelligence, cognitive systems and functional complexity of human brain is significantly facilitated by high-performance computational platforms. In this paper, we present a real-time digital neuromorphic system for the simulation of large-scale conductance-based spiking neural networks (LaCSNN), which has the advantages of both high biological realism and large network scale. Using this system, a detailed large-scale cortico-basal ganglia-thalamocortical loop is simulated using a scalable 3-D network-on-chip (NoC) topology with six Altera Stratix III field-programmable gate arrays simulate 1 million neurons. Novel router architecture is presented to deal with the communication of multiple data flows in the multinuclei neural network, which has not been solved in previous NoC studies. At the single neuron level, cost-efficient conductance-based neuron models are proposed, resulting in the average utilization of 95% less memory resources and 100% less DSP resources for multiplier-less realization, which is the foundation of the large-scale realization. An analysis of the modified models is conducted, including investigation of bifurcation behaviors and ionic dynamics, demonstrating the required range of dynamics with a more reduced resource cost. The proposed LaCSNN system is shown to outperform the alternative state-of-the-art approaches previously used to implement the large-scale spiking neural network, and enables a broad range of potential applications due to its real-time computational power.

9.
IEEE Trans Neural Netw Learn Syst ; 29(5): 1864-1875, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28422667

RESUMO

Enhanced beta (12-30 Hz) oscillatory activity in the basal ganglia (BG) is a prominent feature of the Parkinsonian state in animal models and in patients with Parkinson's disease. Increased beta oscillations are associated with severe dopaminergic striatal depletion. However, the mechanisms underlying these pathological beta oscillations remain elusive. Inspired by the experimental observation that only subsets of neurons within each nucleus in the BG exhibit oscillatory activities, a computational model of the BG-thalamus neuronal network is proposed, which is characterized by subdivided nuclei within the BG. Using different currents externally applied to the neurons within a given nucleus, neurons behave according to one of the two subgroups, named "-N" and "-P," where "-N" and "-P" denote the normal and the Parkinsonian states, respectively. The ratio of "-P" to "-N" neurons indicates the degree of the Parkinsonian state. Simulation results show that if "-P" neurons have a high degree of connectivity in the subthalamic nucleus (STN), they will have a significant downstream effect on the generation of beta oscillations in the globus pallidus. Interestingly, however, the generation of beta oscillations in the STN is independent of the selection of the "-P" neurons in the external segment of the globus pallidus (GPe), despite the reciprocal structure between STN and GPe. This computational model may pave the way to revealing the mechanism of such pathological behaviors in a realistic way that can replicate experimental observations. The simulation results suggest that the STN is more suitable than GPe as a deep brain stimulation target.


Assuntos
Gânglios da Base/fisiologia , Ritmo beta/fisiologia , Modelos Neurológicos , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Redes Neurais de Computação , Doença de Parkinson/patologia
10.
Neural Netw ; 88: 65-73, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192762

RESUMO

In Parkinson's disease, the enhanced beta rhythm is closely associated with akinesia/bradykinesia and rigidity. An increase in beta oscillations (12-35 Hz) within the basal ganglia (BG) nuclei does not proliferate throughout the cortico-basal ganglia loop in uniform fashion; rather it can be subdivided into two distinct frequency bands, i.e. the lower beta (12-20 Hz) and upper beta (21-35 Hz). A computational model of the excitatory and inhibitory neural network that focuses on the population properties is proposed to explore the mechanism underlying the pathological beta oscillations. Simulation results show several findings. The upper beta frequency in the BG originates from a high frequency cortical beta, while the emergence of exaggerated lower beta frequency in the BG depends greatly on the enhanced excitation of a reciprocal network consisting of the globus pallidus externus (GPe) and the subthalamic nucleus (STN). There is also a transition mechanism between the upper and lower beta oscillatory activities, and we explore the impact of self-inhibition within the GPe on the relationship between the upper beta and lower beta oscillations. It is shown that increased self-inhibition within the GPe contributes to increased upper beta oscillations driven by the cortical rhythm, while decrease in the self-inhibition within the GPe facilitates an enhancement of the lower beta oscillations induced by the increased excitability of the BG. This work provides an analysis for understanding the mechanism underlying pathological synchronization in neurological diseases.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Gânglios da Base/fisiologia , Simulação por Computador , Globo Pálido/fisiologia , Humanos , Inibição Neural/fisiologia , Núcleo Subtalâmico/fisiologia
11.
Sci Rep ; 7: 40152, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28065938

RESUMO

Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.


Assuntos
Córtex Cerebral/fisiopatologia , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Tálamo/fisiopatologia , Sistemas Computacionais , Humanos , Potenciais da Membrana , Vias Neurais/fisiopatologia
12.
IEEE Trans Neural Netw Learn Syst ; 28(2): 371-382, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26766381

RESUMO

A generalized predictive closed-loop control strategy to improve the basal ganglia activity patterns in Parkinson's disease (PD) is explored in this paper. Based on system identification, an input-output model is established to reveal the relationship between external stimulation and neuronal responses. The model contributes to the implementation of the generalized predictive control (GPC) algorithm that generates the optimal stimulation waveform to modulate the activities of neuronal nuclei. By analyzing the roles of two critical control parameters within the GPC law, optimal closed-loop control that has the capability of restoring the normal relay reliability of the thalamus with the least stimulation energy expenditure can be achieved. In comparison with open-loop deep brain stimulation and traditional static control schemes, the generalized predictive closed-loop control strategy can optimize the stimulation waveform without requiring any particular knowledge of the physiological properties of the system. This type of closed-loop control strategy generates an adaptive stimulation waveform with low energy expenditure with the potential to improve the treatments for PD.


Assuntos
Gânglios da Base/patologia , Gânglios da Base/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Doença de Parkinson/patologia , Estimulação Encefálica Profunda/métodos , Humanos , Rede Nervosa/patologia , Rede Nervosa/fisiologia , Doença de Parkinson/terapia
13.
IEEE Trans Neural Syst Rehabil Eng ; 24(10): 1109-1121, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26955042

RESUMO

A significant feature of Parkinson's disease (PD) is the inability of the thalamus to respond faithfully to sensorimotor information from the cerebral cortex. This may be the result of abnormal oscillations in the basal ganglia (BG). Deep brain stimulation (DBS) is regarded as an effective method to modulate these pathological brain rhythmic activities. However, the selection of DBS parameters is challenging because the mechanism is not well understood. This work proposes the design of a closed-loop control strategy to automatically adjust the parameters of a DBS waveform based on a computational model. By estimating the synaptic input from BG to the thalamic neuron model as feedback variable, we designed and compared various control algorithms to counteract the effects of pathological oscillatory inputs. We then obtained optimal DBS parameters to modulate the tremor-predominant Parkinsonian state. We showed that even a simple proportional controller provides higher fidelity of thalamic relay of sensorimotor information and lower energy expenditure, as compared with classical open-loop DBS. Integral action further enhances DBS performance. Additionally, a positive bias voltage further improves the relay ability of the thalamus with decreased stimulation energy expenditure. These findings were conducive to the development of a more effective DBS to further improve the treatment of the PD.


Assuntos
Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda/métodos , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Neurônios , Tálamo/fisiopatologia , Simulação por Computador , Retroalimentação Fisiológica , Humanos , Modelos Estatísticos , Vias Neurais/fisiopatologia , Doença de Parkinson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA