RESUMO
Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.
Assuntos
Interleucina-4/farmacologia , Macrófagos Alveolares/fisiologia , Síndrome do Desconforto Respiratório/imunologia , Animais , Avaliação Pré-Clínica de Medicamentos , Interleucina-4/uso terapêutico , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/tratamento farmacológico , Linfócitos T Reguladores/imunologiaRESUMO
Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality each year. There is a paucity of information regarding the mechanisms necessary for ARDS resolution. Foxp3(+) regulatory T cells (Foxp3(+) T(reg) cells) have been shown to be an important determinant of resolution in an experimental model of lung injury. We demonstrate that intratracheal delivery of endotoxin (lipopolysaccharide) elicits alveolar epithelial damage from which the epithelium undergoes proliferation and repair. Epithelial proliferation coincided with an increase in Foxp3(+) T(reg) cells in the lung during the course of resolution. To dissect the role that Foxp3(+) T(reg) cells exert on epithelial proliferation, we depleted Foxp3(+) T(reg) cells, which led to decreased alveolar epithelial proliferation and delayed lung injury recovery. Furthermore, antibody-mediated blockade of CD103, an integrin, which binds to epithelial expressed E-cadherin decreased Foxp3(+) T(reg) numbers and decreased rates of epithelial proliferation after injury. In a non-inflammatory model of regenerative alveologenesis, left lung pneumonectomy, we found that Foxp3(+) T(reg) cells enhanced epithelial proliferation. Moreover, Foxp3(+) T(reg) cells co-cultured with primary type II alveolar cells (AT2) directly increased AT2 cell proliferation in a CD103-dependent manner. These studies provide evidence of a new and integral role for Foxp3(+) T(reg) cells in repair of the lung epithelium.
Assuntos
Células Epiteliais Alveolares/imunologia , Proliferação de Células , Síndrome do Desconforto Respiratório/imunologia , Mucosa Respiratória/imunologia , Linfócitos T Reguladores/imunologia , Células Epiteliais Alveolares/patologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , Linfócitos T Reguladores/patologiaRESUMO
OBJECTIVE: Neuronal nitric oxide synthase (nNOS), normally expressed at the sarcolemmal membrane, is known to be mislocalized to the sarcoplasm in several forms of muscular dystrophy. Our objectives were to characterize further the range of patients manifesting aberrant nNOS sarcolemmal immunolocalization and to study nNOS localization in animal models of nondystrophic myopathy. METHODS: We carried out a retrospective cross-sectional study. We performed immunofluorescent staining for nNOS on biopsy specimens from 161 patients with acquired and nondystrophin inherited neuromuscular conditions. The localization of sarcolemmal nNOS correlated with mobility and functional status. Muscle specimens from mouse models of steroid-induced and starvation-related atrophy were studied for qualitative and quantitative nNOS expression. RESULTS: Sarcolemmal nNOS staining was abnormal in 42% of patients with inherited myopathic conditions, 25% with acquired myopathic conditions, 57% with neurogenic conditions, and 93% with hypotonia. Interestingly, we found significant associations between mobility status or muscle function and sarcolemmal nNOS expression. Furthermore, mouse models of catabolic stress also demonstrated mislocalization of sarcolemmal nNOS. CONCLUSION: Our analyses indicate that nNOS mislocalization is observed in a broad range of nondystrophic neuromuscular conditions associated with impaired mobility status and catabolic stress. Our findings suggest that the assessment of sarcolemmal localization of nNOS represents an important tool for the evaluation of muscle biopsies of patients with a variety of inherited and acquired forms of neuromuscular disorders.