RESUMO
Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.
Assuntos
Biodiversidade , Clima , Insetos/classificação , Rios , Animais , Europa (Continente) , Geografia , Haplótipos , Filogenia , Especificidade da EspécieRESUMO
Freshwater macroinvertebrates provide valuable indicators for biomonitoring ecosystem change in relation to natural and anthropogenic drivers. DNA metabarcoding is an efficient approach for estimating such indicators, but its results may differ from morphotaxonomic approaches traditionally used in biomonitoring. Here we test the hypothesis that despite differences in the number and identity of taxa recorded, both approaches may retrieve comparable patterns of community change, and detect similar ecological gradients influencing such changes. We compared results obtained with morphological identification at family level of macroinvertebrates collected at 80 streams under a Water Framework Directive biomonitoring program in Portugal, with results obtained with metabarcoding from the ethanol preserving the bulk samples, using either single (COI-M19BR2, 16S-Inse01, 18S-Euka02) or multiple markers. Metabarcoding recorded less families and different communities compared to morphotaxonomy, but community sensitivities to disturbance estimated with the IASPT index were more similar across approaches. Spatial variation in local community metrics and the factors influencing such variation were significantly correlated between morphotaxonomy and metabarcoding. After reducing random noise in the dissimilarity matrices, the spatial variation in community composition was also significantly correlated across methods. A dominant gradient of community change was consistently retrieved, and all methods identified a largely similar set of anthropogenic stressors strongly influencing such gradient. Overall, results confirm our initial hypothesis, suggesting that morphotaxonomy and metabarcoding can estimate consistent spatial patterns of community variation and their main drivers. These results are encouraging for macroinvertebrate biomonitoring using metabarcoding approaches, suggesting that they can be intercalibrated with morphotaxonomic approaches to recover equivalent spatial and temporal gradients of ecological change.
Assuntos
Código de Barras de DNA Taxonômico , Rios , Biodiversidade , DNA , Ecossistema , Monitoramento Ambiental , Água Doce , HumanosRESUMO
We present the most updated list of non-native freshwater fauna established in Portugal, including the Azores and Madeira archipelagos. This list includes 67 species at national level but corresponds to 84 species records, of which 53 are in the mainland, 23 in the Azores and 8 in Madeira archipelagos. We also discuss the progression of the cumulative number of introductions since 1800 and identify the most probable vectors of introduction, main taxonomic groups and their regions of origin. Furthermore, we review the existing knowledge about ecological and economic impacts, invasion risk and potential distribution of invaders, under present and future climatic conditions, and the applied management actions, including the production of legislation. Along the 20th century the number of successful introductions increased at an approximate rate of two new species per decade until the beginning of 1970s. Since then, this rate increased to about 14 new species per decade. These introductions were mainly a result of fisheries, as contaminants or for ornamental purposes. Fish and mollusks are the taxonomic groups with more established species, representing more than half of the total. Most species (>70%) are native from other regions of Europe and North America. Studies about ecological or socioeconomic impacts are more common for fish, crustaceans and mollusks. Impacts for most amphibians, reptiles and mammals are not thoroughly studied. A few studies on the impacts and management actions of health-threatening mosquitoes are also available. The potential distribution in the Portuguese territory was modelled for 26 species. Only a minority of these models provides projections of distributions under scenarios of future climate change. A comparison of the Portuguese and EU legislation shows large discrepancies in the invasive species lists. Using the EU list and a ranking procedure for the national context, we identify freshwater species of high national concern for which actions are urgently needed.
Assuntos
Distribuição Animal , Espécies Introduzidas , Invertebrados , Vertebrados , Animais , Organismos Aquáticos , Água Doce , PortugalRESUMO
DNA metabarcoding can contribute to improving cost-effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time-consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms. We sampled macroinvertebrates at five sites and subsampled the preservative ethanol at 1 to 14 days thereafter. DNA was extracted using column-based enzymatic (TISSUE) or mechanic (SOIL) protocols, or with a new magnetic-based enzymatic protocol (BEAD), and a 313-bp COI fragment was amplified. Metabarcoding detected at least 200 macroinvertebrate taxa, including most taxa detected through morphology and for which there was a reference barcode. Better results were obtained with BEAD than SOIL or TISSUE, and with subsamples taken 7-14 than 1-7 days after sampling, in terms of DNA concentration and integrity, taxa diversity and matching between metabarcoding and morphology. Most variation in community composition was explained by differences among sites, with small but significant contributions of subsampling day and extraction method, and negligible contributions of extraction and PCR replication. Our methods enhance reliability of preservative ethanol as a potential source of DNA for macroinvertebrate metabarcoding, with a strong potential application in freshwater biomonitoring.