Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Clin Invest ; 108(1): 153-60, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11435467

RESUMO

Using cre/loxP gene targeting, transgenic mice with muscle-specific inactivation of the GLUT4 gene (muscle GLUT4 KO) were generated and shown to develop a diabetes phenotype. To determine the mechanism, we examined insulin-stimulated glucose uptake and metabolism during hyperinsulinemic-euglycemic clamp in control and muscle GLUT4 KO mice before and after development of diabetes. Insulin-stimulated whole body glucose uptake was decreased by 55% in muscle GLUT4 KO mice, an effect that could be attributed to a 92% decrease in insulin-stimulated muscle glucose uptake. Surprisingly, insulin's ability to stimulate adipose tissue glucose uptake and suppress hepatic glucose production was significantly impaired in muscle GLUT4 KO mice. To address whether these latter changes were caused by glucose toxicity, we treated muscle GLUT4 KO mice with phloridzin to prevent hyperglycemia and found that insulin-stimulated whole body and skeletal muscle glucose uptake were decreased substantially, whereas insulin-stimulated glucose uptake in adipose tissue and suppression of hepatic glucose production were normal after phloridzin treatment. In conclusion, these findings demonstrate that a primary defect in muscle glucose transport can lead to secondary defects in insulin action in adipose tissue and liver due to glucose toxicity. These secondary defects contribute to insulin resistance and to the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucose/toxicidade , Resistência à Insulina/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Musculares/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Idade de Início , Animais , Depressão Química , Modelos Animais de Doenças , Glucose/farmacocinética , Transportador de Glucose Tipo 4 , Hiperglicemia/tratamento farmacológico , Hiperglicemia/prevenção & controle , Insulina/administração & dosagem , Insulina/farmacologia , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares/deficiência , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Florizina/farmacologia , Florizina/uso terapêutico , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Transporte Proteico/efeitos dos fármacos
2.
J Clin Invest ; 108(3): 437-46, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11489937

RESUMO

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and may involve fat-induced activation of a serine kinase cascade involving IKK-beta. To test this hypothesis, we first examined insulin action and signaling in awake rats during hyperinsulinemic-euglycemic clamps after a lipid infusion with or without pretreatment with salicylate, a known inhibitor of IKK-beta. Whole-body glucose uptake and metabolism were estimated using [3-(3)H]glucose infusion, and glucose uptake in individual tissues was estimated using [1-(14)C]2-deoxyglucose injection during the clamp. Here we show that lipid infusion decreased insulin-stimulated glucose uptake and activation of IRS-1-associated PI 3-kinase in skeletal muscle but that salicylate pretreatment prevented these lipid-induced effects. To examine the mechanism of salicylate action, we studied the effects of lipid infusion on insulin action and signaling during the clamp in awake mice lacking IKK-beta. Unlike the response in wild-type mice, IKK-beta knockout mice did not exhibit altered skeletal muscle insulin signaling and action following lipid infusion. In summary, high-dose salicylate and inactivation of IKK-beta prevent fat-induced insulin resistance in skeletal muscle by blocking fat-induced defects in insulin signaling and action and represent a potentially novel class of therapeutic agents for type 2 diabetes.


Assuntos
Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Ácido Salicílico/farmacologia , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Técnica Clamp de Glucose , Quinase I-kappa B , Infusões Intravenosas , Lipídeos/administração & dosagem , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar , Ácido Salicílico/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 98(13): 7522-7, 2001 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-11390966

RESUMO

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.


Assuntos
Glucose/metabolismo , Resistência à Insulina/fisiologia , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Heterozigoto , Insulina/farmacologia , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/genética , Leptina/sangue , Lipase Lipoproteica/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/ultraestrutura , Especificidade de Órgãos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA