Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(4): 1012-1022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955791

RESUMO

PURPOSE: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS: We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS: Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION: MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.


Assuntos
Substância Cinzenta , Glicoproteínas de Membrana , Humanos , Idoso de 80 Anos ou mais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sinapses/metabolismo
2.
Mol Psychiatry ; 27(4): 2273-2281, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165397

RESUMO

The discovery of ketamine as a rapid and robust antidepressant marks the beginning of a new era in the treatment of psychiatric disorders. Ketamine is thought to produce rapid and sustained antidepressant effects through restoration of lost synaptic connections. We investigated this hypothesis in humans for the first time using positron emission tomography (PET) and [11C]UCB-J-a radioligand that binds to the synaptic vesicle protein 2A (SV2A) and provides an index of axon terminal density. Overall, we did not find evidence of a measurable effect on SV2A density 24 h after a single administration of ketamine in non-human primates, healthy controls (HCs), or individuals with major depressive disorder (MDD) and/or posttraumatic stress disorder (PTSD), despite a robust reduction in symptoms. A post-hoc, exploratory analysis suggests that patients with lower SV2A density at baseline may exhibit increased SV2A density 24 h after ketamine. This increase in SV2A was associated with a reduction in depression severity, as well as an increase in dissociative symptoms. These initial findings suggest that a restoration of synaptic connections in patients with lower SV2A at baseline may underlie ketamine's therapeutic effects, however, this needs replication in a larger sample. Further work is needed to build on these initial findings and further establish the nuanced pre- and post-synaptic mechanisms underpinning ketamine's therapeutic effects.


Assuntos
Transtorno Depressivo Maior , Ketamina , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos
3.
Eur J Nucl Med Mol Imaging ; 49(5): 1482-1496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761284

RESUMO

PURPOSE: To quantify the synaptic vesicle glycoprotein 2A (SV2A) changes in the whole central nervous system (CNS) under pathophysiological conditions, a high affinity SV2A PET radiotracer with improved in vivo stability is desirable to minimize the potential confounding effect of radiometabolites. The aim of this study was to develop such a PET tracer based on the molecular scaffold of UCB-A, and evaluate its pharmacokinetics, in vivo stability, specific binding, and nonspecific binding signals in nonhuman primate brains, in comparison with [11C]UCB-A, [11C]UCB-J, and [18F]SynVesT-1. METHODS: The racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) and its two enantiomers were synthesized and assayed for in vitro binding affinities to human SV2A. We synthesized the enantiopure [18F]SDM-16 using the corresponding enantiopure arylstannane precursor. Nonhuman primate brain PET scans were performed on FOCUS 220 scanners. Arterial blood was drawn for the measurement of plasma free fraction (fP), radiometabolite analysis, and construction of the plasma input function. Regional time-activity curves (TACs) were fitted with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Nondisplaceable binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region. RESULTS: SDM-16 was synthesized in 3 steps with 44% overall yield and has the highest affinity (Ki = 0.9 nM) to human SV2A among all reported SV2A ligands. [18F]SDM-16 was prepared in about 20% decay-corrected radiochemical yield within 90 min, with greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in monkey brains and was metabolically more stable than the other SV2A PET tracers. The fP of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was 7 ± 3%, and averaged absolute TRV (aTRV) was 14 ± 7% for the analyzed brain regions. CONCLUSION: We have successfully synthesized a novel SV2A PET tracer [18F]SDM-16, which has the highest SV2A binding affinity and metabolical stability among published SV2A PET tracers. The [18F]SDM-16 brain PET images showed superb contrast between gray matter and white matter. Moreover, [18F]SDM-16 showed high specific and reversible binding in the NHP brains, allowing for the reliable and sensitive quantification of SV2A, and has potential applications in the visualization and quantification of SV2A beyond the brain.


Assuntos
Glicoproteínas de Membrana , Vesículas Sinápticas , Aminoacridinas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Vesículas Sinápticas/metabolismo
4.
Mol Psychiatry ; 26(12): 7690-7698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34135473

RESUMO

Decreased synaptic spine density has been the most consistently reported postmortem finding in schizophrenia (SCZ). A recently developed in vivo measure of synaptic vesicle density estimated using the novel positron emission tomography (PET) ligand [11C]UCB-J is a proxy measure of synaptic density. In this study we determined whether [11C]UCB-J binding, an in vivo measure of synaptic vesicle density, is altered in SCZ. SCZ patients (n = 13, 3 F) and age-, gender-matched healthy controls (HCs) (n = 15, 3 F) underwent PET imaging using [11C]UCB-J and high-resolution research tomography (HRRT). [11C]UCB-J distribution volume (VT) and binding potential (BPND) were estimated using a 1T model with centrum-semiovale as the reference region. Relative to HCs, SCZ patients, showed significantly lower [11C]UCB-J BPND with significant differences in the frontal cortex (-10%, Cohen's d = 1.01), anterior cingulate (-11%, Cohen's d = 1.24), hippocampus (-15%, Cohen's d = 1.29), occipital cortex (-14%, Cohen's d = 1.34), parietal cortex (-10%, p = 0.03, Cohen's d = 0.85) and temporal cortex (-11%, Cohen's d = 1.23). These differences remained significant after partial volume correction. [11C]UCB-J BPND did not correlate with cumulative antipsychotic exposure or gray-matter volume. Consistent with the postmortem and in vivo findings, synaptic vesicle density is lower across several brain regions in SCZ. Frontal synaptic vesicle density correlated with psychosis symptom severity and cognitive performance on social cognition and processing speed. These findings indicate that [11C]UCB-J PET is a sensitive tool to detect lower synaptic density in SCZ and holds promise for future studies of early detection and disease progression.


Assuntos
Esquizofrenia , Vesículas Sinápticas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Vesículas Sinápticas/metabolismo
5.
Addict Biol ; 27(2): e13123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34852401

RESUMO

Preclinical studies have revealed robust and long-lasting alterations in dendritic spines in the brain following cocaine exposure. Such alterations are hypothesized to underlie enduring maladaptive behaviours observed in cocaine use disorder (CUD). The current study explored whether synaptic density is altered in CUD. Fifteen individuals with DSM-5 CUD and 15 demographically matched healthy control (HC) subjects participated in a single 11 C-UCB-J positron emission tomography scan to assess density of synaptic vesicle glycoprotein 2A (SV2A). The volume of distribution (VT ) and the plasma-free fraction-corrected form of the total volume of distribution (VT /fP ) were analysed in the anterior cingulate cortex (ACC), dorsomedial and ventromedial prefrontal cortex (PFC), lateral and medial orbitofrontal cortex (OFC) and ventral striatum. A significant diagnostic-group-by-region interaction was observed for VT and VT /fP . Post hoc analyses revealed no differences on VT , while for VT /fP showed lower values in CUD as compared with HC subjects in the ACC (-10.9%, p = 0.02), ventromedial PFC (-9.9%, p = 0.02) and medial OFC (-9.9%, p = 0.04). Regional VT /fP values in CUD, though unrelated to measures of lifetime cocaine use, were positively correlated with the frequency of recent cocaine use (p = 0.02-0.03) and negatively correlated with cocaine abstinence (p = 0.008-0.03). These findings provide initial preliminary in vivo evidence of altered (lower) synaptic density in the PFC of humans with CUD. Cross-sectional variation in SV2A availability as a function of recent cocaine use and abstinence suggests that synaptic density may be dynamically and plastically regulated by acute cocaine, an observation that merits direct testing by studies using more definitive longitudinal designs.


Assuntos
Cocaína , Vesículas Sinápticas , Encéfalo/metabolismo , Cocaína/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Piridinas/metabolismo , Vesículas Sinápticas/metabolismo
6.
Ann Neurol ; 87(3): 329-338, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953875

RESUMO

OBJECTIVE: Parkinson disease is characterized by motor and nonmotor symptoms, reduced striatal dopamine signaling, and loss of dopamine neurons in the substantia nigra. It is now known that the pathological process in Parkinson disease may begin decades before the clinical diagnosis and include a variety of neuronal alterations in addition to the dopamine system. METHODS: This study examined the density of all synapses with synaptic vesicle glycoprotein 2A (SV2A) in Parkinson disease subjects with mild bilateral disease (n = 12) and matched normal controls (n = 12) using in vivo high-resolution positron emission tomographic imaging as well as postmortem autoradiography in an independent sample with Parkinson disease (n = 15) and normal controls (n = 13) in the substantia nigra and putamen. RESULTS: A group-by-brain region interaction effect (F10, 22 = 3.52, p = 0.007) was observed in the primary brain areas with in vivo SV2A binding. Post hoc analyses revealed that the Parkinson disease group exhibited lower SV2A in the substantia nigra (-45%; p < 0.001), red nucleus (-31%; p = 0.03), and locus coeruleus (-17%; p = 0.03). Exploratory analyses also revealed lower SV2A binding in clinically relevant cortical areas. Using autoradiography, we confirmed lower SV2A in the substantia nigra (-17%; p < 0.005) and nonsignificant findings in the putamen (-4%; p = 0.06). INTERPRETATION: This work provides the first evidence of synaptic loss in brainstem nuclei involved in the pathogenesis of Parkinson disease in living patients. SV2A imaging holds promise for understanding synaptic changes central to the disease. Ann Neurol 2020;87:329-338.


Assuntos
Diagnóstico Precoce , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Putamen/patologia , Substância Negra/patologia , Sinapses/patologia , Autorradiografia , Estudos de Casos e Controles , Feminino , Neuroimagem Funcional , Humanos , Locus Cerúleo/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Putamen/metabolismo , Piridinas , Pirrolidinas , Núcleo Rubro/patologia , Substância Negra/metabolismo
7.
Br J Anaesth ; 126(1): 238-244, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33036760

RESUMO

BACKGROUND: The molecular actions underlying the clinical effects of inhaled anaesthetics such as sevoflurane and isoflurane are not fully understood. Unexpected observations in positron emission tomography (PET) studies with [11C]AZD9272, a metabotropic glutamate receptor 5 (mGluR5) radioligand with possible affinity for monoamine oxidase-B (MAO-B), suggest that its binding is sensitive to anaesthesia with sevoflurane. The objective of the present study was to assess the effects of sevoflurane anaesthesia on the binding of [11C]AZD9272 and of [11C]L-deprenyl-D2, a radioligand selective for MAO-B in non-human primates (NHPs). METHODS: Altogether, 12 PET measurements were conducted with a high-resolution research tomograph using the ligands [11C]AZD9272 or [11C]L-deprenyl-D2 in six cynomolgus monkeys anaesthetised with sevoflurane or ketamine/xylazine. RESULTS: The specific binding of [11C]AZD9272 and [11C]L-deprenyl-D2 was markedly reduced during anaesthesia with sevoflurane compared with ketamine/xylazine. The reduction was 80-90% (n=3) for [11C]AZD9272 and 77-80% (n=3) for [11C]L-deprenyl-D2. CONCLUSIONS: Sevoflurane anaesthesia inhibited radioligand binding to MAO-B in the primate brain. The observation of lower MAO-B binding at clinically relevant concentrations of sevoflurane warrants further exploration of the potential role of MAO-B related mechanisms in regulation of systemic blood pressure during anaesthesia.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Monoaminoxidase/efeitos dos fármacos , Sevoflurano/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Macaca fascicularis , Modelos Animais , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaio Radioligante/métodos
8.
Synapse ; 74(10): e22159, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32324935

RESUMO

Serotonergic neurotransmission plays a key role in the pathophysiology and treatment of various neuropsychiatric diseases. The purpose of this study was to investigate changes in serotonergic neurotransmission after acute tryptophan depletion (ATD) using positron emission tomography (PET) with [11 C]P943, a 5-HT1B receptor radioligand previously shown to be sensitive to changes in 5-HT. Five healthy subjects were scanned on a high resolution PET scanner twice on the same day, before and approximately 5 hours after ingesting capsules containing an amino acid mixture that lacks tryptophan. For each scan, emission data were acquired for 120 min after intravenous bolus injection of [11 C]P943. Binding potential (BPND ) values were estimated from parametric images using the second version of the multilinear reference tissue model (MRTM2, t* = 20 min) with cerebellar grey matter used as a reference region. The change in [11 C]P943 binding (ΔBPND , %) was calculated as (BPND,post  - BPND,pre )/(BPND,pre ) × 100, and correlation analysis was performed to measure linear associations of ΔBPND between raphe and other regions of interest (ROIs). ΔBPND ranged from -6% to 45% in the raphe, with positive values indicating reduced competition from 5-HT. In cortical regions, ΔBPND ranged from -28% to 7%. While these changes did not reach significance, there were significant negative correlations of ΔBPND of the raphe with those of cerebral cortical regions and the thalamus (e.g., r = -.96, p = .011 for average cortex). These findings support the hypothesis that raphe serotonin is a critical modulator of cortical serotonin release via projecting neurons in healthy human subjects.


Assuntos
Córtex Cerebral/metabolismo , Núcleos da Rafe/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Triptofano/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons , Ligação Proteica , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Núcleos da Rafe/diagnóstico por imagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacocinética
9.
Epilepsia ; 61(10): 2183-2193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944949

RESUMO

OBJECTIVE: In this positron emission tomography (PET) study with [11 C]UCB-J, we evaluated synaptic vesicle glycoprotein 2A (SV2A) binding, which is decreased in resected brain tissues from epilepsy patients, in subjects with temporal lobe epilepsy (TLE) and compared the regional binding pattern to [18 F]fluorodeoxyglucose (FDG) uptake. METHODS: Twelve TLE subjects and 12 control subjects were examined. Regional [11 C]UCB-J binding potential (BPND ) values were estimated using the centrum semiovale as a reference region. [18 F]FDG uptake in TLE subjects was quantified using mean radioactivity values. Asymmetry in outcome measures was assessed by comparison of ipsilateral and contralateral regions. Partial volume correction (PVC) with the iterative Yang algorithm was applied based on the FreeSurfer segmentation. RESULTS: In 11 TLE subjects with medial temporal lobe sclerosis (MTS), the hippocampal volumetric asymmetry was 25 ± 11%. After PVC, [11 C]UCB-J BPND asymmetry indices were 37 ± 19% in the hippocampus, with very limited asymmetry in other brain regions. Reductions in [11 C]UCB-J BPND values were restricted to the sclerotic hippocampus when compared to control subjects. The corresponding asymmetry in hippocampal [18 F]FDG uptake was 22 ± 7% and correlated with that of [11 C]UCB-J BPND across subjects (R2  = .38). Hippocampal asymmetries in [11 C]UCB-J binding were 1.7-fold larger than those of [18 F]FDG uptake. SIGNIFICANCE: [11 C]UCB-J binding is reduced in the seizure onset zone of TLE subjects with MTS. PET imaging of SV2A may be a promising biomarker approach in the presurgical selection and evaluation of TLE patients and may improve the sensitivity of molecular imaging for seizure focus detection.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo , Pirrolidinonas/metabolismo , Adulto , Radioisótopos de Carbono/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Adulto Jovem
10.
Eur J Nucl Med Mol Imaging ; 46(9): 1952-1965, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175396

RESUMO

PURPOSE: Synaptic abnormalities have been implicated in a variety of neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and schizophrenia. Hence, PET imaging of the synaptic vesicle glycoprotein 2A (SV2A) may be a valuable in vivo biomarker for neurologic and psychiatric diseases. We previously developed [11C]UCB-J, a PET radiotracer with high affinity and selectivity toward SV2A; however, the short radioactive half-life (20 min for 11C) places some limitations on its broader application. Herein, we report the first synthesis of the longer-lived 18F-labeled counterpart (half-life: 110 min), [18F]UCB-J, and its evaluation in nonhuman primates. METHODS: [18F]UCB-J was synthesized from the iodonium precursors. PET imaging experiments with [18F]UCB-J were conducted in rhesus monkeys to assess the pharmacokinetic and in vivo binding properties. Arterial samples were taken for analysis of radioactive metabolites and generation of input functions. Regional time-activity curves were analyzed using the one-tissue compartment model to derive regional distribution volumes and binding potentials for comparison with [11C]UCB-J. RESULTS: [18F]UCB-J was prepared in high radiochemical and enantiomeric purity, but low radiochemical yield. Evaluation in nonhuman primates indicated that the radiotracer displayed pharmacokinetic and imaging characteristics similar to those of [11C]UCB-J, with moderate metabolism rate, high brain uptake, fast and reversible binding kinetics, and high specific binding signals. CONCLUSION: We have accomplished the first synthesis of the novel SV2A radiotracer [18F]UCB-J. [18F]UCB-J is demonstrated to be an excellent imaging agent and may prove to be useful for imaging and quantification of SV2A expression, and synaptic density, in humans.


Assuntos
Radioisótopos de Flúor/química , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Pirrolidinonas/síntese química , Animais , Técnicas de Química Sintética , Feminino , Macaca mulatta , Masculino , Piridinas/química , Pirrolidinonas/química , Radioquímica
11.
Epilepsia ; 60(5): 958-967, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30924924

RESUMO

OBJECTIVE: Brivaracetam (BRV) and levetiracetam (LEV) are antiepileptic drugs that bind synaptic vesicle glycoprotein 2A (SV2A). In vitro and in vivo animal studies suggest faster brain penetration and SV2A occupancy (SO) after dosing with BRV than LEV. We evaluated human brain penetration and SO time course of BRV and LEV at therapeutically relevant doses using the SV2A positron emission tomography (PET) tracer 11 C-UCB-J (EP0074; NCT02602860). METHODS: Healthy volunteers were recruited into three cohorts. Cohort 1 (n = 4) was examined with PET at baseline and during displacement after intravenous BRV (100 mg) or LEV (1500 mg). Cohort 2 (n = 5) was studied during displacement and 4 hours postdose (BRV 50-200 mg or LEV 1500 mg). Cohort 3 (n = 4) was examined at baseline and steady state after 4 days of twice-daily oral dosing of BRV (50-100 mg) and 4 hours postdose of LEV (250-600 mg). Half-time of 11 C-UCB-J signal change was computed from displacement measurements. Half-saturation concentrations (IC50 ) were determined from calculated SO. RESULTS: Observed tracer displacement half-times were 18 ± 6 minutes for BRV (100 mg, n = 4), 9.7 and 10.1 minutes for BRV (200 mg, n = 2), and 28 ± 6 minutes for LEV (1500 mg, n = 6). Estimated corrected half-times were 8 minutes shorter. The SO was 66%-70% for 100 mg intravenous BRV, 84%-85% for 200 mg intravenous BRV, and 78%-84% for intravenous 1500 mg LEV. The IC50 of BRV (0.46 µg/mL) was 8.7-fold lower than of LEV (4.02 µg/mL). BRV data fitted a single SO versus plasma concentration relationship. Steady state SO for 100 mg BRV was 86%-87% (peak) and 76%-82% (trough). SIGNIFICANCE: BRV achieves high SO more rapidly than LEV when intravenously administered at therapeutic doses. Thus, BRV may have utility in treating acute seizures; further clinical studies are needed for confirmation.


Assuntos
Anticonvulsivantes/farmacocinética , Levetiracetam/farmacocinética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons , Pirrolidinonas/farmacocinética , Administração Oral , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/sangue , Anticonvulsivantes/metabolismo , Radioisótopos de Carbono , Feminino , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Injeções Intravenosas , Levetiracetam/administração & dosagem , Levetiracetam/sangue , Levetiracetam/metabolismo , Imageamento por Ressonância Magnética , Masculino , Ligação Proteica , Pirrolidinonas/administração & dosagem , Pirrolidinonas/sangue , Pirrolidinonas/metabolismo
12.
Int J Neuropsychopharmacol ; 20(9): 683-691, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911007

RESUMO

Background: [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain. Methods: Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region. Results: Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex. Conclusions: The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.


Assuntos
Benzilaminas/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Fenfluramina/farmacologia , Fenetilaminas/farmacocinética , Receptor 5-HT2A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacocinética , Aminoquinolinas/farmacocinética , Animais , Mapeamento Encefálico , Relação Dose-Resposta a Droga , Feminino , Fenfluramina/sangue , Fluorbenzenos/farmacocinética , Macaca mulatta , Imageamento por Ressonância Magnética , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Ligação Proteica/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacocinética
13.
Eur J Nucl Med Mol Imaging ; 44(2): 308-320, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27817159

RESUMO

PURPOSE: [11C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [11C]Lu AE92686 has high affinity for PDE10A (IC 50 = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [11C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. METHODS: A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [11C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. RESULTS: Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (V T) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar V T values could not be derived by the 2TCM. For cerebellum, a proposed reference region, V T values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while V T values in target regions remained stable. Both pretreatment drugs significantly decreased [11C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BP ND) values, derived with the simplified reference tissue model (SRTM), were 13-17 in putamen and 3-5 in substantia nigra and correlated well to values from the Logan plot analysis. CONCLUSIONS: The method proposed for quantification of [11C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [11C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Molecular/métodos , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Triazóis/farmacocinética , Animais , Feminino , Humanos , Marcação por Isótopo/métodos , Ligantes , Macaca fascicularis , Taxa de Depuração Metabólica , Especificidade de Órgãos , Inibidores de Fosfodiesterase/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
14.
Artigo em Inglês | MEDLINE | ID: mdl-26993630

RESUMO

BACKGROUND: Previous autoradiography studies have suggested a marked interspecies variation in the neuroanatomical localization and expression levels of the neurokinin 3 receptor, with high density in the brain of rat, gerbil, and guinea pig, but at the time offered no conclusive evidence for its presence in the human brain. Hitherto available radioligands have displayed low affinity for the human neurokinin 3 receptor relative to the rodent homologue and may thus not be optimal for cross-species analyses of the expression of this protein. METHODS: A novel neurokinin 3 receptor radioligand, [(18)F]Lu AF10628 ((S)-N-(cyclobutyl(3-fluorophenyl)methyl)-8-fluoro-2-((3-[(18)F]-fluoropropyl)amino)-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxamide), was synthesized and used for autoradiography studies in cryosections from guinea pig, monkey, and human brain as well as for positron emission tomography studies in guinea pig and monkey. RESULTS: The results confirmed previous observations of interspecies variation in the neurokinin 3 receptor brain localization with more extensive distribution in guinea pig than in primate brain. In the human brain, specific binding to the neurokinin 3 receptor was highest in the amygdala and in the hypothalamus and very low in other regions examined. Positron emission tomography imaging showed a pattern consistent with that observed using autoradiography. The radioactivity was, however, found to accumulate in skull bone, which limits the use of this radioligand for in vivo quantification of neurokinin 3 receptor binding. CONCLUSION: Species differences in the brain distribution of neurokinin 3 receptors should be considered when using animal models for predicting human neurokinin 3 receptor pharmacology. For positron emission tomography imaging of brain neurokinin 3 receptors, additional work is required to develop a radioligand with more favorable in vivo properties.


Assuntos
Encéfalo/metabolismo , Receptores da Neurocinina-3/metabolismo , Animais , Autorradiografia , Osso e Ossos/metabolismo , Cobaias , Humanos , Macaca fascicularis , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Especificidade da Espécie
15.
Int J Neuropsychopharmacol ; 18(10): pyv036, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25813017

RESUMO

BACKGROUND: Positron emission tomography microdosing of radiolabeled drugs allows for noninvasive studies of organ exposure in vivo. The aim of the present study was to examine and compare the brain exposure of 12 commercially available CNS drugs and one non-CNS drug. METHODS: The drugs were radiolabeled with (11)C (t 1/2 = 20.4 minutes) and examined using a high resolution research tomograph. In cynomolgus monkeys, each drug was examined twice. In rhesus monkeys, a first positron emission tomography microdosing measurement was repeated after preadministration with unlabeled drug to examine potential dose-dependent effects on brain exposure. Partition coefficients between brain and plasma (KP) were calculated by dividing the AUC0-90 min for brain with that for plasma or by a compartmental analysis (VT). Unbound KP (KP u,u) was obtained by correction for the free fraction in brain and plasma. RESULTS: After intravenous injection, the maximum radioactivity concentration (C max, %ID) in brain ranged from 0.01% to 6.2%. For 10 of the 12 CNS drugs, C max, %ID was >2%, indicating a preferential distribution to brain. A lower C max, %ID was observed for morphine, sulpiride, and verapamil. K P ranged from 0.002 (sulpiride) to 68 (sertraline) and 7 of 13 drugs had KP u,u close to unity. For morphine, sulpiride, and verapamil, K P u,u was <0.3, indicating impaired diffusion and/or active efflux. Brain exposure at microdosing agreed with pharmacological dosing conditions for the investigated drugs. CONCLUSIONS: This study represents the largest positron emission tomography study on brain exposure of commercially available CNS drugs in nonhuman primates and may guide interpretation of positron emission tomography microdosing data for novel drug candidates.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Fármacos do Sistema Nervoso Central/farmacocinética , Morfina/farmacocinética , Sulpirida/farmacocinética , Verapamil/farmacocinética , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Fármacos do Sistema Nervoso Central/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Macaca fascicularis , Macaca mulatta , Modelos Biológicos , Modelos Químicos , Morfina/administração & dosagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sulpirida/administração & dosagem , Verapamil/administração & dosagem
16.
Synapse ; 69(3): 172-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25530024

RESUMO

This study explored the use of the α2C -adrenoceptor PET tracer [(11) C]ORM-13070 to monitor α2C -AR occupancy in the human brain. The subtype-nonselective α2 -AR antagonist atipamezole was administered to eight healthy volunteer subjects to determine its efficacy and potency (Emax and EC50 ) at inhibiting tracer uptake. We also explored whether the tracer could reveal changes in the synaptic concentrations of endogenous noradrenaline in the brain, in response to several pharmacological and sensory challenge conditions. We assessed occupancy from the bound-to-free ratio measured during 5-30 min post injection. Based on extrapolation of one-site binding, the maximal extent of inhibition of striatal [(11) C]ORM-13070 uptake (Emax ) achievable by atipamezole was 78% (95% CI 69-87%) in the caudate nucleus and 65% (53-77%) in the putamen. The EC50 estimates of atipamezole (1.6 and 2.5 ng/ml, respectively) were in agreement with the drug's affinity to α2C -ARs. These findings represent clear support for the use of [(11) C]ORM-13070 for monitoring drug occupancy of α2C -ARs in the living human brain. Three of the employed noradrenaline challenges were associated with small, approximately 10-16% average reductions in tracer uptake in the dorsal striatum (atomoxetine, ketamine, and the cold pressor test; P < 0.05 for all), but insulin-induced hypoglycemia did not affect tracer uptake. The tracer is suitable for studying central nervous system receptor occupancy by α2C -AR ligands in human subjects. [(11) C]ORM-13070 also holds potential as a tool for in vivo monitoring of synaptic concentrations of noradrenaline, but this remains to be further evaluated in future studies.


Assuntos
Encéfalo/diagnóstico por imagem , Dioxanos/farmacocinética , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Receptores Adrenérgicos alfa 2/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Adulto , Humanos , Imidazóis/farmacocinética , Masculino , Ligação Proteica , Distribuição Tecidual
17.
Neuroimage ; 84: 342-53, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994452

RESUMO

Only recently the first successful serotonin 2A (5-HT2A) receptor agonist PET radioligands have been described, with [(11)C]Cimbi-36 reported as the most promising in the pig brain so far. Agonist radioligands may target specifically the G protein-coupled state of the receptors and thereby provide a more meaningful assessment of available receptors than antagonist radioligands. In the current study we characterized [(11)C]Cimbi-36 receptor binding in the primate brain. On five experimental days, a total of 14 PET measurements were conducted in three female rhesus monkeys. On each day, PET measurements were conducted after intravenous injection of [(11)C]Cimbi-36 during baseline conditions and after intravenous infusion of the 5-HT2 receptor antagonist ketanserin (n=3) or the 5-HT2C receptor antagonist SB 242084 (n=2). On four of the experimental days an additional baseline PET measurement was conducted after injection of [(11)C]MDL 100907. All PET measurements were performed for 2h in a HRRT PET system and arterial blood was obtained for measurement of the [(11)C]Cimbi-36 input function. Quantification of [(11)C]Cimbi-36 receptor binding was performed using kinetic and graphical analysis. After injection of [(11)C]Cimbi-36 the regional distribution of radioactivity in brain was in accordance with the known 5-HT2 receptor distribution. The two-tissue compartment model was superior for the description of the time-radioactivity curves of all examined brain regions. BPND values obtained with reference tissue models correlated with corresponding values obtained with kinetic modeling. Administration of ketanserin decreased the binding in all brain regions but did not affect the cerebellar distribution volume. The BPND of [(11)C]Cimbi-36 was 56±8% of [(11)C]MDL 100907 across cortical regions, but higher in other brain regions including choroid plexus. After administration of SB 242084, [(11)C]Cimbi-36 binding was nearly completely inhibited in the choroid plexus, partly reduced in several subcortical regions (e.g. hippocampus), but not affected in the cortical regions. In conclusion, the receptor binding of [(11)C]Cimbi-36 can be quantified using kinetic modeling and the cerebellum was found to be a suitable reference region. The difference between [(11)C]Cimbi-36 and [(11)C]MDL 100907 binding in the choroid plexus is related to 5-HT2C receptor binding of [(11)C]Cimbi-36. [(11)C]Cimbi-36 is the first agonist radioligand suitable for examination of 5-HT2A receptors in the cortical regions and of 5-HT2C receptors in the choroid plexus of the primate brain.


Assuntos
Benzilaminas/farmacocinética , Encéfalo/metabolismo , Simulação por Computador , Interpretação de Imagem Assistida por Computador/métodos , Fenetilaminas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Feminino , Humanos , Macaca mulatta , Taxa de Depuração Metabólica , Modelos Neurológicos , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Agonistas do Receptor 5-HT2 de Serotonina/farmacocinética , Distribuição Tecidual
18.
Int J Neuropsychopharmacol ; 18(3)2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25522417

RESUMO

BACKGROUND: The neurotransmitter norepinephrine has been implicated in psychiatric and neurodegenerative disorders. Examination of synaptic norepinephrine concentrations in the living brain may be possible with positron emission tomography (PET), but has been hampered by the lack of suitable radioligands. METHODS: We explored the use of the novel α2C-adrenoceptor antagonist PET tracer [(11)C]ORM-13070 for measurement of amphetamine-induced changes in synaptic norepinephrine. The effect of amphetamine on [(11)C]ORM-13070 binding was evaluated ex vivo in rat brain sections and in vivo with PET imaging in monkeys. RESULTS: Microdialysis experiments confirmed amphetamine-induced elevations in rat striatal norepinephrine and dopamine concentrations. Regional [(11)C]ORM-13070 receptor binding was high in the striatum and low in the cerebellum. After injection of [(11)C]ORM-13070 in rats, mean striatal specific binding ratios, determined using cerebellum as a reference region, were 1.4±0.3 after vehicle pretreatment and 1.2±0.2 after amphetamine administration (0.3mg/kg, subcutaneous). Injection of [(11)C]ORM-13070 in non-human primates resulted in mean striatal binding potential (BP ND) estimates of 0.65±0.12 at baseline. Intravenous administration of amphetamine (0.5 and 1.0mg/kg, i.v.) reduced BP ND values by 31-50%. Amphetamine (0.3mg/kg, subcutaneous) increased extracellular norepinephrine (by 400%) and dopamine (by 270%) in rat striata. CONCLUSIONS: Together, these results indicate that [(11)C]ORM-13070 may be a useful tool for evaluation of synaptic norepinephrine concentrations in vivo. Future studies are required to further understand a potential contribution of dopamine to the amphetamine-induced effect.


Assuntos
Anfetamina/farmacologia , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Tomografia por Emissão de Pósitrons , Receptores Adrenérgicos alfa 2/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Cloridrato de Atomoxetina , Dioxanos/metabolismo , Feminino , Humanos , Imidazóis/farmacologia , Macaca fascicularis , Masculino , Piperazinas/metabolismo , Propilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Compostos Radiofarmacêuticos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
19.
Eur J Nucl Med Mol Imaging ; 41(2): 301-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24006152

RESUMO

PURPOSE: [(11)C]AZ10419369 is a recently developed 5-HT1B receptor radioligand that is sensitive to changes in endogenous serotonin concentrations in the primate brain. Thus, [(11)C] AZ10419369 may serve as a useful tool in clinical studies of the pathophysiology and pharmacological treatment of diseases related to the serotonin system, such as depression and anxiety disorders. The aim of this study was to evaluate the test-retest reliability of [(11)C]AZ10419369. METHODS: Eight men were examined with PET and [(11)C] AZ10419369 twice on the same day. The binding potentials (BPND) of [(11)C]AZ10419369 in selected serotonergic projection areas and in the raphe nuclei (RN) were determined using the simplified reference tissue model, and for comparison also using a wavelet-aided parametric imaging approach. The BPND values obtained from the first and second PET scans were compared by means of descriptive statistics, difference, absolute variability and intraclass correlation coefficient. RESULTS: Similar BPND values were obtained with the two methods. The absolute mean differences in BPND between PET 1 and PET 2 were less than 3% in all serotonergic projection regions. Absolute variabilities were low in cortical regions (5 - 7%), low to moderate (7 - 14%) in subcortical regions, but higher (20%) in the RN. CONCLUSION: The BPND of [(11)C]AZ10419369 is highly reproducible in cortical regions and satisfactory in subcortical projection areas. The variability in the RN is higher. Thus larger sample sizes or larger divergences are required to assess a potential difference between subjects or between experimental conditions in this region.


Assuntos
Benzopiranos/farmacologia , Morfolinas/farmacologia , Piperazinas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Núcleos da Rafe/diagnóstico por imagem , Receptor 5-HT1B de Serotonina/metabolismo , Adulto , Interpretação Estatística de Dados , Humanos , Masculino , Ligação Proteica , Reprodutibilidade dos Testes
20.
NPJ Parkinsons Dis ; 10(1): 42, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402233

RESUMO

Parkinson's disease (PD) is the fastest growing neurodegenerative disease, but at present there is no cure, nor any disease-modifying treatments. Synaptic biomarkers from in vivo imaging have shown promise in imaging loss of synapses in PD and other neurodegenerative disorders. Here, we provide new clinical insights from a cross-sectional, high-resolution positron emission tomography (PET) study of 30 PD individuals and 30 age- and sex-matched healthy controls (HC) with the radiotracer [11C]UCB-J, which binds to synaptic vesicle glycoprotein 2A (SV2A), and is therefore, a biomarker of synaptic density in the living brain. We also examined a measure of relative brain perfusion from the early part of the same PET scan. Our results provide evidence for synaptic density loss in the substantia nigra that had been previously reported, but also extend this to other early-Braak stage regions known to be affected in PD (brainstem, caudate, olfactory cortex). Importantly, we also found a direct association between synaptic density loss in the nigra and severity of symptoms in patients. A greater extent and wider distribution of synaptic density loss in PD patients with longer illness duration suggests that [11C]UCB-J PET can be used to measure synapse loss with disease progression. We also demonstrate lower brain perfusion in PD vs. HC groups, with a greater extent of abnormalities in those with longer duration of illness, suggesting that [11C]UCB-J PET can simultaneously provide information on changes in brain perfusion. These results implicate synaptic imaging as a useful PD biomarker for future disease-modifying interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA