Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Inorg Chem ; 63(4): 2122-2130, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38205788

RESUMO

Porphyrin-based metal-organic frameworks (MOFs) are attractive materials for photo- and thermally activated catalysis due to their unique structural features related to the porphyrin moiety, guest-accessible porosity, and high chemical tunability. In this study, we report the synthetic incorporation of nonplanar ß-ethyl-functionalized porphyrin linkers into the framework structure of PCN-222, obtaining a solid-solution series of materials with different modified linker contents. Comprehensive analysis by a combination of characterization techniques, such as NMR, UV-vis and IR spectroscopy, powder X-ray diffraction, and N2 sorption analysis, allows for the confirmation of linker incorporation. A detailed structural analysis of intrinsic material properties, such as the thermal response of the different materials, underlines the complexity of synthesizing and understanding such materials. This study presents a blueprint for synthesizing and analyzing porphyrin-based mixed-linker MOF systems and highlights the hurdles of characterizing such materials.

2.
Inorg Chem ; 63(8): 3749-3756, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335041

RESUMO

Key strategies in cluster synthesis include the use of modulating agents (e.g., coordinating additives). We studied the influence of various phosphines exhibiting different steric and electronic properties on the reduction of the Au(I) precursor to Au(0) clusters. We report a synthesis of the bimetallic clusters [Au6(AlCp*)6] = [Au6Al6](Cp*)6 (1) and [HAu7(AlCp*)6] = [HAu7Al6](Cp*)6 (2) (Cp* = pentamethylcyclopentadiene) using Au(I) precursors and AlCp*. The cluster [Au2(AlCp*)5] = [Au2Al5](Cp*)5 (3) was isolated and identified as an intermediate species in the reactions to 1 and 2. The processes of cluster growth and degradation were investigated by in situ 1H NMR and LIFDI-MS techniques. The structures of 1 and 2 were established by DFT geometry optimization. These octahedral clusters can both be described as closed-shell 18-electron superatoms.

3.
Inorg Chem ; 63(1): 129-140, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109782

RESUMO

Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.

4.
Chem Rev ; 122(24): 17241-17338, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36318747

RESUMO

Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".


Assuntos
Grafite , Estruturas Metalorgânicas , Catálise , Condutividade Elétrica , Eletrônica
5.
Small ; 19(37): e2301933, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37140098

RESUMO

Leveraging size effects, nanoparticles of metal-organic frameworks, nanoMOFs, have recently gained traction, amplifying their scopes in electrochemical sensing. However, their synthesis, especially under eco-friendly ambient conditions remains an unmet challenge. Herein, an ambient and fast secondary building unit (SBU)-assisted synthesis (SAS) route to afford a prototypal porphyrinic MOF, Fe-MOF-525 is introduced. Albeit the benign room temperature conditions, Fe-MOF-525(SAS) nanocrystallites obtained are of ≈30 nm size, relatively smaller than the ones conventional solvothermal methods elicit. Integrating Fe-MOF-525(SAS) as a thin film on a conductive indium tin oxide (ITO) surface affords Fe-MOF-525(SAS)/ITO, an electrochemical biosensor. Synergistic confluence of modular MOF composition, analyte-specific redox metalloporphyrin sites, and crystal downsizing contribute to its benchmark voltammetric uric acid (UA) sensing. Showcasing a wide linear range of UA detection with high sensitivity and low detection limit, this SAS strategy coalesces ambient condition synthesis and nanoparticle size control, paving a green way to advanced sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Benchmarking , Temperatura , Técnicas Eletroquímicas/métodos , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
6.
Inorg Chem ; 62(29): 11381-11389, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37433083

RESUMO

Late dinuclear transition-metal (especially group 10 and 11) homoleptic carbonyl complexes are elusive species and have so far not been isolated. A typical example is the 30-electron species [Ni2(CO)5], the structure and bonding of which is still debated. We show that, by using the AlCp* ligand (isolobal to CO), it is possible to isolate and fully characterize [Ni2(AlCp*)5] (1), which inspired us to revisit by DFT calculations, the bonding situation within [Ni2L5] (L = CO, AlCp*) and other isoelectronic species. The short Ni-Ni X-ray distance in 1 (2.270 Å) should not be attributed to the existence of a typical localized triple-bond between the metals, but rather to a strong through-bond interaction involving the three bridging ligands via their donating lone pairs and accepting π* orbitals. In contrast, in the isostructural 32-electron [Au2(AlCp*)5] (2) cluster an orbital with M-M antibonding and Al...Al bonding character is occupied, which is in accordance with the particularly long Au-Au distance (3.856 Å) and rather short Al...Al contacts between the bridging ligands (2.843 Å). This work shows that, unlike late transition-metal [M2(CO)x] species, stable [M2(AlCp*)x] complexes can be isolated, owing to the subtle differences between CO and AlCp*. We propose a similar approach for rationalizing the bonding in the emblematic 34 electron species [Fe2(CO)9].

7.
Chem Soc Rev ; 51(24): 9933-9959, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250400

RESUMO

Nanosized metal aggregates (MAs), including metal nanoparticles (NPs) and nanoclusters (NCs), are often the active species in numerous applications. In order to maintain the active form of MAs in "use", they need to be anchored and stabilised, preventing agglomeration. In this context, metal-organic frameworks (MOFs), which exhibit a unique combination of properties, are of particular interest as a tunable and porous matrix to host MAs. A high degree of control in the synthesis towards atom-efficient and application-oriented MA@MOF composites is required to derive specific structure-property relationships and in turn to enable design of functions on the molecular level. Due to the versatility of MA@MOF (derived) materials, their applications are not limited to the obvious field of catalysis, but increasingly include 'out of the box' applications, for example medical diagnostics and theranostics, as well as specialised (bio-)sensoring techniques. This review focuses on recent advances in the controlled synthesis of MA@MOF materials en route to atom-precise MAs. The main synthetic strategies, namely 'ship-in-bottle', 'bottle-around-ship', and approaches to achieve novel hierarchical MA@MOF structures are highlighted and discussed while identifying their potential as well as their limitations. Hereby, an overview of standard characterisation methods that enable a systematic analysis procedure and state-of-art techniques that localise MA within MOF cavities are provided. While the perspectives of MA@MOF materials in general have been reviewed various times in the recent past, few atom-precise MAs inside MOFs have been reported so far, opening opportunities for future investigation.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Catálise , Porosidade , Metais
8.
Chem Soc Rev ; 51(12): 5175-5213, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35670434

RESUMO

While there is a tremendous amount of scientific research on metal organic frameworks (MOFs) for gas storage/separation, catalysis and energy storage, the development and application of biocompatible MOFs still poses major challenges. In general, they can be synthesised from various biocompatible linkers and metal ions but particularly cyclodextrins (CDs) as cyclic oligosaccharides are an astute choice for the former. Although the field of CD-MOF materials is still in the early stages and their design and fabrication comes with many hurdles, the benefits coming from CDs built in a porous framework are exciting. Versatile host-guest complexation abilities, high encapsulation capacity and hydrophilicity are among the valuable properties inherent to CDs and offer extended and novel applications to MOFs. In this review, we provide an overview of the state-of-the-art synthesis, design, properties and applications of these materials. Initially, a rationale for the preparation of CD-based MOFs is provided, based on the chemical and structural properties of CDs and including their advantages and disadvantages. Further on, the review exhaustively surveys CD-MOF based materials by categorising them into three sub-classes, namely (i) CD-MOFs, (ii) CD-MOF hybrids, obtained via combination with external materials, and (iii) CD-MOF-derived materials prepared under pyrolytic conditions. Subsequently, CD-based MOFs in practical applications, such as drug delivery and cancer therapy, sensors, gas storage, (enantiomer) separations, electrical devices, food industry, and agriculture, are discussed. We conclude by summarizing the state of the art in the field and highlighting some promising future developments of CD-MOFs.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Catálise , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Porosidade
9.
Nano Lett ; 22(24): 9876-9882, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480706

RESUMO

Atomic-scale magnetic field sensors based on nitrogen vacancy (NV) defects in diamonds are an exciting platform for nanoscale nuclear magnetic resonance (NMR) spectroscopy. The detection of NMR signals from a few zeptoliters to single molecules or even single nuclear spins has been demonstrated using NV centers close to the diamond surface. However, fast molecular diffusion of sample molecules in and out of the nanoscale detection volumes impedes their detection and limits current experiments to solid-state or highly viscous samples. Here, we show that restricting diffusion by confinement enables nanoscale NMR spectroscopy of liquid samples. Our approach uses metal-organic frameworks (MOF) with angstrom-sized pores on a diamond chip to trap sample molecules near the NV centers. This enables the detection of NMR signals from a liquid sample, which would not be detectable without confinement. These results set the route for nanoscale liquid-phase NMR with high spectral resolution.


Assuntos
Estruturas Metalorgânicas , Nitrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Diamante/química
10.
Angew Chem Int Ed Engl ; 62(29): e202302859, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36995914

RESUMO

The advances made in the field of stimuli-responsive catalysis during the last five years with a focus on the novel recently-emerged directions and applications have been surveyed. Metal-free catalysts and organometallic complexes, as well as biomimetic systems and extended structures, which display switchable catalytic activity for a variety of organic transformations, are discussed. Light-activated systems comprised of photochromic molecules capable of modulating reaction rate, yield, or enantioselectivity based on geometric and electronic changes associated with photoisomerization are the focus of the detailed discussion. Alternative stimuli, including pH and temperature, which could be applied either alone or in combination with light, are also addressed. Recent advances clearly demonstrate that the capability to finely tune catalyst behavior via an external stimulus is a powerful tool that could alter the landscape of sustainable chemistry.

11.
Angew Chem Int Ed Engl ; 62(36): e202308790, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37408378

RESUMO

The bimetallic, decanuclear Ni3 Ga7 -cluster of the formula [Ni3 (GaTMP)3 (µ2 -GaTMP)3 (µ3 -GaTMP)] (1, TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2. Low-temperature 2D NMR experiments at -80 °C show that 2 consist of a mixture of a di- (2Di ), tetra- (2Tetra ) and hexahydride species (2Hexa ). The structures of 2Di and 2Tetra are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis.

12.
Angew Chem Int Ed Engl ; 62(37): e202308715, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486788

RESUMO

Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.

13.
Angew Chem Int Ed Engl ; 62(33): e202218076, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37052183

RESUMO

Flexible porous frameworks are at the forefront of materials research. A unique feature is their ability to open and close their pores in an adaptive manner induced by chemical and physical stimuli. Such enzyme-like selective recognition offers a wide range of functions ranging from gas storage and separation to sensing, actuation, mechanical energy storage and catalysis. However, the factors affecting switchability are poorly understood. In particular, the role of building blocks, as well as secondary factors (crystal size, defects, cooperativity) and the role of host-guest interactions, profit from systematic investigations of an idealized model by advanced analytical techniques and simulations. The review describes an integrated approach targeting the deliberate design of pillared layer metal-organic frameworks as idealized model materials for the analysis of critical factors affecting framework dynamics and summarizes the resulting progress in their understanding and application.

14.
J Am Chem Soc ; 144(51): 23249-23263, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512744

RESUMO

Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.


Assuntos
Amigos , Estruturas Metalorgânicas , Humanos , Metais/química , Cátions , Catálise
15.
Nat Mater ; 20(1): 93-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33106648

RESUMO

Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.

16.
Chemistry ; 28(54): e202200887, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35748293

RESUMO

Treatment of [Ru(COD)(MeAllyl)2 ] and [Ru(COD)(COT)] with GaCp* under hydrogenolytic conditions leads to reactive intermediates which activate Si-H or C-H bonds, respectively. The product complexes [Ru(GaCp*)3 (SiEt3 )H3 ] (1) and [Ru(GaCp*)3 (C7 H7 )H3 ] (2) are formed with HSiEt3 or with toluene as the solvent, respectively. While 1 was isolated and fully characterized by NMR, MS, IR and SC-XRD, 2 was too labile to be isolated and was observed and characterized in situ by using mass spectrometry, including labelling experiments for the unambiguous assignment of the elemental composition. The structural assignment was confirmed by DFT calculations. The relative energies of the four isomers possible upon toluene activation at the ortho-, meta-, para- and CH3 -positions have been determined and point to aromatic C-H activation. The Ru-Ga bond was analyzed by EDA and QTAIM and compared to the Ru-P bond in the analogue phosphine compound. Bonding analyses indicate that the Ru-GaCp* bond is weaker than the Ru-PR3 bond.

17.
Chemistry ; 28(56): e202201575, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35801389

RESUMO

N-heterocyclic carbenes (NHCs) have become attractive ligands for functionalizing gold nanoparticle surfaces with applications ranging from catalysis to biomedicine. Despite their great potential, NHC stabilized gold colloids (NHC@AuNPs) are still scarcely explored and further efforts should be conducted to improve their design and functionalization. Here, the 'bottom-up' synthesis of two water-soluble gold nanoparticles (AuNP-1 and AuNP-2) stabilized by hydrophilic mono- and bidentate NHC ligands is reported together with their characterization by various spectroscopic and analytical methods. The NPs showed key differences likely to be due to the selected NHC ligand systems. Transmission electron microscopy (TEM) images showed small quasi-spherical and faceted NHC@AuNPs of similar particle size (ca. 2.3-2.6 nm) and narrow particle size distribution, but the colloids featured different ratios of Au(I)/Au(0) by X-ray photoelectron spectroscopy (XPS). Furthermore, the NHC@AuNPs were supported on titania and fully characterized. The new NPs were studied for their catalytic activity towards the reduction of nitrophenol substrates, the reduction of resazurin and for their photothermal efficiency. Initial results on their application in photothermal therapy (PTT) were obtained in human cancer cells in vitro. The aforementioned reactions represent important model reactions towards wastewater remediation, bioorthogonal transformations and cancer treatment.


Assuntos
Ouro , Nanopartículas Metálicas , Coloides , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Metano/análogos & derivados , Nitrofenóis , Águas Residuárias , Água
18.
Inorg Chem ; 61(40): 15831-15840, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166497

RESUMO

A tetratopic bis(diphenylamino)anthraquinone linker is presented, and its physicochemical properties are evaluated. The linker is shown to successfully coordinate alkaline earth metals leading to four new reported metal-organic frameworks (MOFs), which have been fully characterized, including single-crystal X-ray diffraction. The physicochemical and emissive properties of the MOF materials are investigated and compared to those of the uncoordinated ligand. Finally, the catalytic behavior of the ligand and the MOF materials toward the photooxidation of sulfides is described.

19.
Inorg Chem ; 61(50): 20405-20423, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36484812

RESUMO

With the aim to improve the design of metal complexes as stabilizers of noncanonical DNA secondary structures, namely, G-quadruplexes (G4s), a series of cyclic dinuclear Au(I) N-heterocyclic carbene complexes based on xanthine and benzimidazole ligands has been synthesized and characterized by various methods, including X-ray diffraction. Fluorescence resonance energy transfer (FRET) and CD DNA melting assays unraveled the compounds' stabilization properties toward G4s of different topologies of physiological relevance. Initial structure-activity relationships have been identified and recognize the family of xanthine derivatives as those more selective toward G4s versus duplex DNA. The binding modes and free-energy landscape of the most active xanthine derivative (featuring a propyl linker) with the promoter sequence cKIT1 have been studied by metadynamics. The atomistic simulations evidenced that the Au(I) compound interacts noncovalently with the top G4 tetrad. The theoretical results on the Au(I) complex/DNA Gibbs free energy of binding were experimentally validated by FRET DNA melting assays. The compounds have also been tested for their antiproliferative properties in human cancer cells in vitro, showing generally moderate activity. This study provides further insights into the biological activity of Au(I) organometallics acting via noncovalent interactions and underlines their promise for tunable targeted applications by appropriate chemical modifications.


Assuntos
Quadruplex G , Humanos , Ligantes , DNA/química , Transferência Ressonante de Energia de Fluorescência , Xantinas
20.
Chem Soc Rev ; 50(15): 8496-8510, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34114586

RESUMO

In this article intermetalloid clusters of Cu-Zn, Cu-AI, Cu-Sn, and Cu-Pb are discussed. Intermetallic compounds based on these metal combinations are of the Hume-Rothery type with well-defined structures related to the valence electron count of the involved metals. Many Zintl-type and molecular clusters with these metals are known with remarkable structural parallels to the respective solid-state phases. On several examples, this article discusses intermetalloid clusters in terms of their metal core structures and relates them to structural principles in intermetallic solid-state phases. Also the syntheses of such clusters are addressed. Zintl-type and molecular clusters are most generally accessible from organometallic precursor complexes with redox processes between the different metals as an underlying synthesis concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA