Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Learn Mem ; 30(10): 271-277, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802548

RESUMO

Historically, the development of valid and reliable methods for assessing higher-order cognitive abilities (e.g., rule learning and transfer) has been difficult in rodent models. To date, limited evidence supports the existence of higher cognitive abilities such as rule generation and complex decision-making in mice, rats, and rabbits. To this end, we sought to develop a task that would require mice to learn and transfer a rule. We trained mice to visually discriminate a series of images (image set, six total) of increasing complexity following three stages: (1) learn a visual target, (2) learn a rule (ignore any new images around the target), and finally (3) apply this rule in abstract form to a comparable but new image set. To evaluate learning for each stage, we measured (1) days (and performance by day) to discriminate the original target at criterion, (2) days (and performance by day) to get back to criterion when images in the set were altered by the introduction of distractors (rule learning), and (3) overall days (and performance by day) to criterion when experienced versus naïve cohorts of mice were tested on the same image set (rule transfer). Twenty-seven wild-type male C57 mice were tested using Bussey-Saksida touchscreen operant conditioning boxes (Lafayette Instruments). Two comparable black-white image sets were delivered sequentially (counterbalanced for order) to two identical cohorts of mice. Results showed that all mice were able to effectively learn their initial target image and could recall it >80 d later. We also found that mice were able to quickly learn and apply a "rule" : Ignore new distractors and continue to identify their visual target embedded in more complex images. The presence of rule learning was supported because performance criterion thresholds were regained much faster than initial learning when distractors were introduced. On the other hand, mice appeared unable to transfer this rule to a new set of stimuli. This is supported because visual discrimination curves for a new image set were no better than an initial (naïve) learning by a matched cohort of mice. Overall results have important implications for phenotyping research and particularly for the modeling of complex disorders in mice.


Assuntos
Condicionamento Operante , Aprendizagem , Humanos , Camundongos , Masculino , Ratos , Animais , Coelhos , Percepção Visual , Discriminação Psicológica , Cognição , Aprendizagem por Discriminação
2.
Cytokine ; 111: 481-489, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29908923

RESUMO

BACKGROUND: Quantification of biofluid cytokines is a rapidly growing area of translational research. However, comparability across the expanding number of available assay platforms for detection of the same proteins remains to be determined. We aimed to directly compare a panel of commonly measured cytokines in plasma of typically aging adults across two high sensitivity quantification platforms, Meso Scale Discovery high performance electrochemiluminiscence (HPE) and single-molecule immunosorbent assays (Simoa) by Quanterix. METHODS: 57 community-dwelling older adults completed a blood draw, neuropsychological assessment, and brain MRI as part of a healthy brain aging study. Plasma samples from the same draw dates were analyzed for IL-10, IP-10, IL-6, TNFα, and IL-1ß on HPE and Simoa, separately. Reliable detectability (coefficient of variance (CV) < 20% and outliers 3 interquartiles above the median removed), intra-assay precision, absolute concentrations, reproducibility across platforms, and concurrent associations with external variables of interest (e.g., demographics, peripheral markers of vascular health, and brain health) were examined. RESULTS: The proportion of cytokines reliably measured on HPE (87.7-93.0%) and Simoa (75.4-93.0%) did not differ (ps > 0.32), with the exception of IL-1ß which was only reliably measured using Simoa (68.4%). On average, CVs were acceptable at <8% across both platforms. Absolute measured concentrations were higher using Simoa for IL-10, IL-6, and TNFα (ps < 0.05). HPE and Simoa shared only small-to-moderate proportions of variance with one another on the same cytokine proteins (range: r = 0.26 for IL-10 to r = 0.64 for IL-6), though platform agreement did not dependent on cytokine concentrations. Cytokine ratios within each platform demonstrated similar relative patterns of up- and down-regulation across HPE and Simoa, though still significantly differed (ps < 0.001). Supporting concurrent validity, all 95% confidence intervals of the correlations between cytokines and external variables overlapped between the two platforms. Moreover, most associations were in expected directions and consistently so across platforms (e.g., IL-6 and TNFα), though with several notable exceptions for IP-10 and IL-10. CONCLUSIONS: HPE and Simoa showed comparable detectability and intra-assay precision measuring a panel of commonly examined cytokine proteins, with the exception of IL-1ß which was not reliably detected on HPE. However, Simoa demonstrated overall higher concentrations and the two platforms did not show agreement when directly compared against one another. Relative cytokine ratios and associations demonstrated similar patterns across platforms. Absolute cytokine concentrations may not be directly comparable across platforms, may be analyte dependent, and interpretation may be best limited to discussion of relative associations.


Assuntos
Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imunoensaio/métodos , Interleucina-10/sangue , Interleucina-10/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
3.
Cereb Cortex ; 26(9): 3705-3718, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26250775

RESUMO

Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Neurotransmissores/metabolismo , Córtex Somatossensorial/fisiologia , Regulação para Cima/fisiologia
4.
Mol Psychiatry ; 20(11): 1294-300, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324103

RESUMO

We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0 ± 5.2 years compared with 41.1 ± 7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.


Assuntos
Doença de Alzheimer/genética , Quimiocina CCL11/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idade de Início , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/complicações , Quimiocina CCL11/sangue , Cromossomos Humanos Par 17/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
5.
Neural Plast ; 2016: 2585230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042359

RESUMO

Hypoxia ischemia (HI) is a recognized risk factor among late-preterm infants, with HI events leading to varied neuropathology and cognitive/behavioral deficits. Studies suggest a sex difference in the incidence of HI and in the severity of subsequent behavioral deficits (with better outcomes in females). Mechanisms of a female advantage remain unknown but could involve sex-specific patterns of compensation to injury. Neuroprotective hypothermia is also used to ameliorate HI damage and attenuate behavioral deficits. Though currently prescribed only for HI in term infants, cooling has potential intrainsult applications to high-risk late-preterm infants as well. To address this important clinical issue, we conducted a study using male and female rats with a postnatal (P) day 7 HI injury induced under normothermic and hypothermic conditions. The current study reports patterns of neuropathology evident in postmortem tissue. Results showed a potent benefit of intrainsult hypothermia that was comparable for both sexes. Findings also show surprisingly different patterns of compensation in the contralateral hemisphere, with increases in hippocampal thickness in HI females contrasting reduced thickness in HI males. Findings provide a framework for future research to compare and contrast mechanisms of neuroprotection and postinjury plasticity in both sexes following a late-preterm HI insult.


Assuntos
Hipocampo/patologia , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/patologia , Plasticidade Neuronal , Animais , Animais Recém-Nascidos , Feminino , Masculino , Células Piramidais/patologia , Ratos , Ratos Wistar , Caracteres Sexuais
6.
J Emerg Med ; 50(5): e215-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26899514

RESUMO

BACKGROUND: Horner's syndrome refers to the clinical triad of ptosis, miosis, and anhidrosis resulting from disruption of the ocular and facial sympathetic pathways. A myriad of etiologies can lead to Horner's syndrome; awareness of the underlying anatomy can assist physicians in identifying potential causes and initiating appropriate care. CASE REPORT: Two patients presented to our Nashville-area hospital in 2014. Patient 1 was a 26-year-old man who noticed facial asymmetry one day after an outpatient orthopedic procedure. His symptoms were attributed to his posterior interscalene anesthesia device; with deactivation of this device, the symptoms rapidly resolved. Patient 2 was a 42-year-old man who presented to our emergency department with persistent headache and ptosis over several weeks. Computed tomography angiography revealed ipsilateral carotid dissection and the patient was admitted for further management. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: The pathologies underlying Horner's syndrome are exceedingly diverse. Although classic teaching often focuses on neoplastic causes, and more specifically Pancoast tumors, neoplasms are discovered only in a small minority of Horner's syndrome cases. Other etiologies include trauma, cervical artery dissection, and infarction. With a better understanding of the pertinent anatomy and array of possible etiologies, emergency physicians may have more success in identifying and treating the causes of Horner's syndrome.


Assuntos
Dissecção Aórtica/complicações , Bloqueio do Plexo Braquial/efeitos adversos , Doenças das Artérias Carótidas/complicações , Síndrome de Horner/etiologia , Síndrome de Horner/fisiopatologia , Adulto , Serviço Hospitalar de Emergência/organização & administração , Cefaleia/etiologia , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Tomografia Computadorizada por Raios X/métodos
7.
Dev Neurosci ; 37(4-5): 440-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791036

RESUMO

Infants born prematurely are at risk for cardiovascular events causing hypoxia-ischemia (HI; reduced blood and oxygen to the brain). HI in turn can cause neuropathology, though patterns of damage are sometimes diffuse and often highly variable (with clinical heterogeneity further magnified by rapid development). As a result, though HI injury is associated with long-term behavioral and cognitive impairments in general, pathology indices for specific infants can provide only limited insight into individual prognosis. The current paper addresses this important clinical issue using a rat model that simulates unilateral HI in a late preterm infant coupled with long-term behavioral evaluation in two processing domains - auditory discrimination and spatial learning/memory. We examined the following: (1) whether deficits on one task would predict deficits on the other (suggesting that subjects with more severe injury perform worse across all cognitive domains) or (2) whether domain-specific outcomes among HI-injured subjects would be uncorrelated (suggesting differential damage to orthogonal neural systems). All animals (sham and HI) received initial auditory testing and were assigned to additional auditory testing (group A) or spatial maze testing (group B). This allowed within-task (group A) and between-task (group B) correlation. Anatomic measures of cortical, hippocampal and ventricular volume (indexing HI damage) were also obtained and correlated against behavioral measures. Results showed that auditory discrimination in the juvenile period was not correlated with spatial working memory in adulthood (group B) in either sham or HI rats. Conversely, early auditory processing performance for group A HI animals significantly predicted auditory deficits in adulthood (p = 0.05; no correlation in shams). Anatomic data also revealed significant relationships between the volumes of different brain areas within both HI and shams, but anatomic measures did not correlate with any behavioral measure in the HI group (though we saw a hippocampal/spatial correlation in shams, in the expected direction). Overall, current data provide an impetus to enhance tools for characterizing individual HI-related pathology in neonates, which could provide more accurate individual prognoses within specific cognitive/behavioral domains and thus improved patient-specific early interventions.


Assuntos
Percepção Auditiva/fisiologia , Transtornos da Percepção Auditiva/fisiopatologia , Encéfalo/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Animais Recém-Nascidos , Transtornos da Percepção Auditiva/etiologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Masculino , Ratos , Ratos Wistar
8.
Cereb Cortex ; 23(4): 859-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22455839

RESUMO

Cognition and behavior depend on the precise placement and interconnection of complex ensembles of neurons in cerebral cortex. Mutations that disrupt migration of immature neurons from the ventricular zone to the cortical plate have provided major insight into mechanisms of brain development and disease. We have discovered a new and highly penetrant spontaneous mutation that leads to large nodular bilateral subcortical heterotopias with partial callosal agenesis. The mutant phenotype was first detected in a colony of fully inbred BXD29 mice already known to harbor a mutation in Tlr4. Neurons confined to the heterotopias are mainly born in midgestation to late gestation and would normally have migrated into layers 2-4 of overlying neocortex. Callosal cross-sectional area and fiber number are reduced up to 50% compared with coisogenic wildtype BXD29 substrain controls. Mutants have a pronounced and highly selective defect in rapid auditory processing. The segregation pattern of the mutant phenotype is most consistent with a two-locus autosomal recessive model, and selective genotyping definitively rules out the Tlr4 mutation as a cause. The discovery of a novel mutation with strong pleiotropic anatomical and behavioral effects provides an important new resource for dissecting molecular mechanisms and functional consequences of errors of neuronal migration.


Assuntos
Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/genética , Córtex Cerebral/patologia , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Estimulação Acústica , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Córtex Cerebral/metabolismo , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação/genética , Fator 88 de Diferenciação Mieloide/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
9.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399433

RESUMO

Magnesium sulfate (MagSul) is used clinically to prevent eclamptic seizures during pregnancy and as a tocolytic for preterm labor. More recently, it has been implicated as offering neural protection in utero for at-risk infants. However, evidence is mixed. Some studies found that MagSul reduced the incidence of cerebral palsy (CP) but did not improve other measures of neurologic function. Others did not find any improvement in outcomes. Inconsistencies in the literature may reflect the fact that sex effects are largely ignored, despite evidence that MagSul shows sex effects in animal models of neonatal brain injury. The current study used retrospective infant data to assess differences in developmental outcomes as a function of sex and MagSul treatment. We found that on 18-month neurodevelopmental cognitive and language measures, preterm males treated with MagSul (n = 209) had significantly worse scores than their untreated counterparts (n = 135; p < 0.05). Female preterm infants treated with MagSul (n = 220), on the other hand, showed a cognitive benefit relative to untreated females (n = 123; p < 0.05). No significant effects of MagSul were seen among females on language (p > 0.05). These results have tremendous implications for risk-benefit considerations in the ongoing use of MagSul and may explain why benefits have been hard to identify in clinical trials when sex is not considered.

11.
Dev Neurosci ; 34(6): 515-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23328535

RESUMO

Hypoxia-ischemia (HI) and associated brain injuries are seen in premature as well as term infants with birth complications. The resulting impairments involve deficits in many cognitive domains, including language development. Poor rapid auditory processing is hypothesized to be one possible underlying factor leading to subsequent language delays. Mild hypothermia treatment for HI injuries in term infants is widely used as an intervention but can be costly and time consuming. Data suggest that the effectiveness of hypothermia treatment following HI injury declines beyond 6 h following injury. Consequently, the availability of a therapeutic alternative without these limitations could allow doctors to treat HI-injured infants more effectively and thus reduce deleterious cognitive and language outcomes. Evidence from both human studies and animal models of neonatal HI suggests that erythropoietin (Epo), an endogenous cytokine hormone, may be a therapeutic agent that can ameliorate HI brain injury and preserve subsequent cognitive development and function. The current study sought to investigate the therapeutic effectiveness of Epo when administered immediately after HI injury, or delayed at intervals following the injury, in neonatal rodents. Rat pups received an induced HI injury on postnatal day 7, followed by an intraperitoneal injection of Epo (1,000 U/kg) immediately, 60 min, or 180 min following induction of injury. Subjects were tested on rapid auditory processing tasks in juvenile (P38-42) and adult periods (P80-85). Ventricular and cortical size was also measured from post mortem tissue. Results from the current study show a therapeutic benefit of Epo when given immediately following induction of HI injury, with diminished benefit from a 60-min-delayed injection of Epo and no protection following a 180-min-delayed injection. The current data thus show that the effectiveness of a single dose of Epo in ameliorating auditory processing deficits following HI injury decreases precipitously as treatment is delayed following injury. These data may have important implications for experimental human neonatal intervention with Epo.


Assuntos
Eritropoetina/administração & dosagem , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/patologia , Masculino , Ratos , Ratos Wistar
12.
Genes Brain Behav ; 21(6): e12808, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419947

RESUMO

Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with KIAA0319 as a main candidate. Animal models targeting the rodent homolog (Kiaa0319) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of Kiaa0319 expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, Kiaa0319 knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested Kiaa0319 KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that Kiaa0319 KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for KIAA0319 in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm KIAA0319 variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.


Assuntos
Dislexia , Corpos Geniculados , Animais , Percepção Auditiva/genética , Dislexia/genética , Camundongos , Camundongos Knockout , RNA Interferente Pequeno , Ratos
13.
Dev Neurosci ; 33(6): 494-504, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22041713

RESUMO

Hypoxia-ischemia (HI; concurrent oxygen/blood deficiency) and associated encephalopathy represent a common cause of neurological injury in premature/low-birth-weight infants and term infants with birth complications. Resulting behavioral impairments include cognitive and/or sensory processing deficits, as well as language disabilities, and clinical evidence shows that male infants with HI exhibit more severe cognitive deficits compared to females with equivalent injury. Evidence also demonstrates activation of sex-dependent apoptotic pathways following HI events, with males preferentially activating a caspase-independent cascade of cell death and females preferentially activating a caspase-dependent cascade following neonatal hypoxic and/or ischemic insults. Based on these combined data, the 'female protection' following HI injury may reflect the endogenous X-linked inhibitor of apoptosis (XIAP), which effectively binds effector caspases and halts downstream cleavage of effector caspases (thus reducing cell death). To test this theory, the current study utilized neonatal injections of vehicle or embelin (a small molecule inhibitor of XIAP) in male and female rats with or without induced HI injury on postnatal day 7 (P7). Subsequent behavioral testing using a clinically relevant task revealed that the inhibition of XIAP exacerbated HI-induced persistent behavioral deficits in females, with no effect on HI males. These results support sex differences in mechanisms of cell death following early HI injuries, and suggest a potential clinical benefit from the development of sex-specific neuroprotectants for the treatment of HI.


Assuntos
Comportamento Animal/fisiologia , Hipóxia-Isquemia Encefálica/metabolismo , Caracteres Sexuais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Animais Recém-Nascidos , Benzoquinonas/farmacologia , Feminino , Masculino , Ratos , Ratos Wistar
14.
J Surg Orthop Adv ; 20(2): 83-101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21838069

RESUMO

As participation in athletics continues to increase, so too will the occurrence of on-field injuries and medical emergencies. The field of sports medicine continues to advance and many events will have on-site medical staff present. This article reviews the most catastrophic injuries and medical emergencies that are encountered in sports and presents the highest level evidence in regards to on-field approach and management of the athlete.


Assuntos
Traumatismos em Atletas , Emergências , Medicina de Emergência Baseada em Evidências/organização & administração , Medicina Esportiva/métodos , Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/terapia , Humanos , Índices de Gravidade do Trauma , Estados Unidos/epidemiologia
15.
Genes (Basel) ; 12(2)2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498833

RESUMO

Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is "phenotype free". Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability.


Assuntos
Proteínas da Matriz Extracelular , Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Mutação , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Animais , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Camundongos Knockout , Fenótipo
16.
J Neonatal Perinatal Med ; 14(3): 353-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33164949

RESUMO

BACKGROUND: Children born prematurely (<37 gestational weeks) are at risk for a variety of adverse medical events. They may experience ischemic and/or hemorrhagic events leading to negative neural sequelae. They are also exposed to repeated stressful experiences as part of life-saving care within the neonatal intensive care unit (NICU). These experiences have been associated with methylation of SLC6A4, a gene which codes for serotonin transport proteins, and is associated with anxiety, depression, and increased incidence of autism spectrum disorders.The purpose of this study was to examine the effects of altered serotonin levels on behavioral and neuroanatomical outcomes in a neonatal rodent model with or without exposure to hypoxic-ischemic (HI) injury. METHODS: Wistar rat pups were randomly assigned to either HI injury or sham groups. Pups within each group were treated with a chronic SSRI (Citalopram HBr) to simulate the effects of SLC6A4 methylation, or saline (NS). Subjects were assessed on behavioral tasks and neuropathologic indices. RESULTS: HI injured subjects performed poorly on behavioral tasks. SSRI subjects did not display significantly greater anxiety. HI + SSRI subjects learned faster than HI+NS. Histologically, SSRI subjects had predominantly larger brain volumes than NS. CONCLUSION: SSRI treated subjects without injury showed patterns of increased anxiety, consistent with theories of SLC6A4 methylation. The paradoxical trend to improved cognition in HI+SSRI subjects relative to HI alone, may reflect an unexpected SSRI neuroprotective effect in the presence of injury, and may be related to serotonin-induced neurogenesis.


Assuntos
Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Ratos , Ratos Wistar , Roedores , Serotonina
17.
Nat Neurosci ; 9(10): 1213-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17001339

RESUMO

All four genes thus far linked to developmental dyslexia participate in brain development, and abnormalities in brain development are increasingly reported in dyslexia. Comparable abnormalities induced in young rodent brains cause auditory and cognitive deficits, underscoring the potential relevance of these brain changes to dyslexia. Our perspective on dyslexia is that some of the brain changes cause phonological processing abnormalities as well as auditory processing abnormalities; the latter, we speculate, resolve in a proportion of individuals during development, but contribute early on to the phonological disorder in dyslexia. Thus, we propose a tentative pathway between a genetic effect, developmental brain changes, and perceptual and cognitive deficits associated with dyslexia.


Assuntos
Comportamento , Dislexia/genética , Dislexia/fisiopatologia , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Dislexia/patologia , Humanos , Modelos Moleculares
18.
Psychopharmacology (Berl) ; 237(1): 33-43, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31392358

RESUMO

RATIONALE: Effort-based decision-making tasks offer animals choices between preferred reinforcers that require high effort to obtain vs. low effort/low reward options. The neural mechanisms of effort-based choice are widely studied in rats, and evidence indicates that mesolimbic dopamine (DA) and related neural systems play a key role. Fewer studies of effort-based choice have been performed in mice. OBJECTIVES: The present studies used touchscreen operant procedures (Bussey-Saksida boxes) to assess effort-based choice in mice. METHODS: CD1 mice were assessed on a concurrent fixed ratio 1 panel pressing/choice procedure. Mice were allowed to choose between rearing to press an elevated panel on the touchscreen for a preferred food (strawberry milkshake) vs. consuming a concurrently available less preferred alternative (high carbohydrate pellets). RESULTS: The DA D2 antagonist haloperidol (0.05-0.15 mg/kg IP) produced a dose-related decrease in panel pressing. Intake of food pellets was not reduced by haloperidol, and in fact, there was a significant quadratic trend, indicating a tendency for pellet intake to increase at low/moderate doses. In contrast, reinforcer devaluation by removing food restriction substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred milkshake vs. pellets. Haloperidol did not affect food intake or preference. CONCLUSION: Haloperidol reduced the tendency to work for food, but this reduction was not due to decreases in primary food motivation or preference. Mouse touchscreen procedures demonstrate effects of haloperidol that are similar but not identical to those shown in rats. These rodent studies may be relevant for understanding motivational dysfunctions in humans.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Tomada de Decisões/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Haloperidol/farmacologia , Animais , Dopamina/farmacologia , Masculino , Camundongos
19.
Commun Biol ; 3(1): 180, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313182

RESUMO

Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems.


Assuntos
Percepção Auditiva/genética , Transtornos da Percepção Auditiva/genética , Linguagem Infantil , Proteínas da Matriz Extracelular/genética , Transtornos da Audição/genética , Audição/genética , Transtornos do Desenvolvimento da Linguagem/genética , Polimorfismo de Nucleotídeo Único , Fatores Etários , Animais , Transtornos da Percepção Auditiva/fisiopatologia , Transtornos da Percepção Auditiva/psicologia , Criança , Pré-Escolar , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtornos da Audição/fisiopatologia , Transtornos da Audição/psicologia , Heterozigoto , Humanos , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/psicologia , Estudos Longitudinais , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Fenótipo , Medição de Risco , Fatores de Risco , Reino Unido , Vocalização Animal , Sequenciamento Completo do Genoma
20.
Pharmacol Biochem Behav ; 196: 172975, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593787

RESUMO

Catechol-o-methyltransferase (COMT) is an enzyme that metabolizes catecholamines, and is crucial for clearance of dopamine (DA) in prefrontal cortex. Val158Met polymorphism, which causes a valine (Val) to methionine (Met) substitution at codon 158, is reported to be associated with human psychopathologies in some studies. The Val/Val variant of the enzyme results in higher dopamine metabolism, which results in reduced dopamine transmission. Thus, it is important to investigate the relation between Val158Met polymorphisms using rodent models of psychiatric symptoms, including negative symptoms such as motivational dysfunction. In the present study, humanized COMT transgenic mice with two genotype groups (Val/Val (Val) and Met/Met (Met) homozygotes) and wild-type (WT) mice from the S129 background were tested using a touchscreen effort-based choice paradigm. Mice were trained to choose between delivery of a preferred liquid diet that reinforced panel pressing on various fixed ratio (FR) schedules (high-effort alternative), vs. intake of pellets concurrently available in the chamber (low-effort alternative). Panel pressing requirements were controlled by varying the FR levels (FR1, 2, 4, 8, 16) in ascending and descending sequences across weeks of testing. All mice were able to acquire the initial touchscreen operant training, and there was an inverse relationship between the number of reinforcers delivered by panel pressing and pellet intake across different FR levels. There was a significant group x FR level interaction in the ascending limb, with panel presses in the Val group being significantly lower than the WT group in FR1-8, and lower than Met in FR4. These findings indicate that the humanized Val allele in mice modulates FR/pellet-choice performance, as marked by lower levels of panel pressing in the Val group when the ratio requirement was moderately high. These studies may contribute to the understanding of the role of COMT polymorphisms in negative symptoms such as motivational dysfunctions in schizophrenic patients.


Assuntos
Catecol O-Metiltransferase/genética , Tomada de Decisões , Metionina/genética , Polimorfismo Genético , Valina/genética , Animais , Percepção Auditiva/genética , Catecol O-Metiltransferase/química , Humanos , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA