Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852912

RESUMO

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Neuroproteção , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Diflunisal/uso terapêutico , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Salicilatos/uso terapêutico , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/sangue
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256083

RESUMO

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.


Assuntos
Alquil e Aril Transferases , Glucosiltransferases , Proteínas de Membrana , Degeneração Retiniana , Humanos , Genes Modificadores , Glucosiltransferases/genética , Proteínas de Membrana/genética , Mutação , Retina , Degeneração Retiniana/genética
3.
Exp Eye Res ; 235: 109637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659708

RESUMO

Although cell type-specific Cre recombinase-expressing mouse lines are commonly used to generate conditional knockout of genes of interest, germline recombination and ectopic "leakiness" in Cre recombinase expression in non-specific cell types has been observed in several neuronal and glial-specific Cre lines. This often leads to inadvertent loss of conditional mouse lines, requiring rederivation. It is therefore imperative to be able to monitor and validate cell type-specific Cre recombinase-mediated gene editing. Herein, we describe a simple, inexpensive, rapid ZsGreen fluor-reporter-based strategy for genotype-free identification of ectopic leakiness using a custom-designed, 3-D blue LED light box. We assessed cell type-specific expression in several allegedly specific Cre recombinase mouse lines commonly used in vision research: retinal pigment epithelium (RPE)-specific (VMD2 (Best1) Cre, RPE65 Cre); astrocyte-specific (GFAP Cre); as well as photoreceptor-bipolar progenitor cell-specific (CRX Cre). Our standardized workflow allows facile, rapid identification of ectopic and non-specific Cre recombinase expression in any presume specific Cre mouse line, without the need for genotyping and without causing animal distress.


Assuntos
Corantes , Neurônios , Animais , Camundongos , Integrases/genética , Coloração e Rotulagem
4.
Exp Eye Res ; 234: 109585, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481225

RESUMO

Traumatic brain injury (TBI) caused by acoustic blast overpressure (ABO) is frequently associated with chronic visual deficits in military personnel and civilians. In this study, we characterized retinal gliotic response in adult male rats following a single ABO exposure directed to one side of the head. Expression of gliosis markers and intermediate filaments was assessed at 48 h and 1 wk post-ABO exposure, in comparison to age-matched non-exposed control retina. In response to a single ABO exposure, type III IF, glial fibrillary acidic protein (GFAP) was variably induced in a subpopulation of retinal Müller glia in ipsilateral eyes. ABO-exposed eyes exhibited radial Müller glial GFAP filament extension through the inner plexiform layer (IPL) and the inner nuclear layer (INL) through the retina in both the nasal quadrant and juxta-optic nerve head (jONH) eye regions at 1 wk post-ABO. We observed an ∼6-fold increase (p ≤ 0.05) in radial glial GFAP immunolabeling in the IPL in both eye regions, in comparison to regionally matched controls. Similarly, GFAP extension through the INL into the outer retina was elevated ∼3-fold, p ≤ 0.05 in the nasal retina, but exhibited wider variability in the jONH retina. In contrast, constitutive type III IF vimentin exhibited greater remodeling in retinal Müller glia through the jONH retina compared to the nasal retina in response to ABO. We observed areas of lateral vimentin remodeling through the Müller glial end-feet, and greater mid-outer retinal radial vimentin IF extension in a subpopulation of glia at 1 wk post-ABO. We also observed a significant increase in total retinal levels of the type III IF desmin in ABO-exposed retina vs. controls (∼1.6-fold, p ≤ 0.01). In addition, ABO-exposure elicited varied glial induction of developmentally regulated type VI family IFs (nestin and synemin) in subpopulations of Müller cells at 48 h and 1 wk post-ABO. We demonstrate that multiple glial phenotypes emerge in the rat retina following a single ABO exposure, rather than a global homogeneous retinal glial response, involving less well characterized IF protein forms which warrant further investigation in the context of ABO-induced retinal gliosis.


Assuntos
Gliose , Filamentos Intermediários , Masculino , Ratos , Animais , Vimentina/metabolismo , Gliose/metabolismo , Filamentos Intermediários/metabolismo , Retina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo
5.
Adv Exp Med Biol ; 1415: 449-456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440071

RESUMO

De novo synthesis of dolichol (Dol) and dolichyl phosphate (Dol-P) is essential for protein glycosylation. Herein, we provide a brief overview of Dol and Dol-P synthesis and the maintenance of their cellular content. Retinal Dol metabolism and the requirement of Dol-linked oligosaccharide synthesis in the neural retina also are discussed. There are recently discovered and an emerging class of rare congenital disorders that affect Dol metabolism, involving the genes DHDDS, NUS1, SRD5A3, and DOLK. Further understanding of these congenital disorders is evolving, based upon studies utilizing yeast and murine models, as well as clinical reports of these rare disorders. We summarize the known visual deficits associated with Dol metabolism disorders, and identify the need for generation and characterization of suitable animal models of these disorders to elucidate the underlying molecular and cellular mechanisms of the associated retinopathies.


Assuntos
Dolicóis , Saccharomyces cerevisiae , Animais , Camundongos , Dolicóis/genética , Dolicóis/metabolismo , Glicosilação , Oligossacarídeos/metabolismo , Retina/metabolismo , Saccharomyces cerevisiae/genética
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362109

RESUMO

Retinitis pigmentosa-59 (RP59) is a rare, recessive form of RP, caused by mutations in the gene encoding DHDDS (dehydrodolichyl diphosphate synthase). DHDDS forms a heterotetrameric complex with Nogo-B receptor (NgBR; gene NUS1) to form a cis-prenyltransferase (CPT) enzyme complex, which is required for the synthesis of dolichol, which in turn is required for protein N-glycosylation as well as other glycosylation reactions in eukaryotic cells. Herein, we review the published phenotypic characteristics of RP59 models extant, with an emphasis on their ocular phenotypes, based primarily upon knock-in of known RP59-associated DHDDS mutations as well as cell type- and tissue-specific knockout of DHDDS alleles in mice. We also briefly review findings in RP59 patients with retinal disease and other patients with DHDDS mutations causing epilepsy and other neurologic disease. We discuss these findings in the context of addressing "knowledge gaps" in our current understanding of the underlying pathobiology mechanism of RP59, as well as their potential utility for developing therapeutic interventions to block the onset or to dampen the severity or progression of RP59.


Assuntos
Alquil e Aril Transferases , Animais , Camundongos , Dolicóis/metabolismo , Mutação , Vertebrados/metabolismo , Modelos Animais
7.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233305

RESUMO

Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.


Assuntos
Defeitos Congênitos da Glicosilação , Doenças Retinianas , Acetilglucosamina , Animais , Ácido Aspártico/genética , Defeitos Congênitos da Glicosilação/genética , Glicina/genética , Humanos , Camundongos , Debilidade Muscular , Mutação , Mutação de Sentido Incorreto , Fosfatos , Qualidade de Vida , Difosfato de Uridina
8.
J Lipid Res ; 62: 100057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662384

RESUMO

Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.


Assuntos
Epitélio Pigmentado da Retina
9.
J Lipid Res ; 62: 100002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410752

RESUMO

Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3ß-hydroxysterol-Δ7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral, and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with aging and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or in female Dhcr7L-KO mice, suggesting that hepatic disruption of postsqualene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7.


Assuntos
Síndrome de Smith-Lemli-Opitz
10.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652836

RESUMO

Smith-Lemli-Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.


Assuntos
Células Fotorreceptoras de Vertebrados/patologia , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Transcriptoma , Animais , Linhagem Celular , Sobrevivência Celular , Dano ao DNA , Modelos Animais de Doenças , Camundongos , Oxisteróis , Células Fotorreceptoras de Vertebrados/metabolismo , Ratos , Síndrome de Smith-Lemli-Opitz/induzido quimicamente
11.
Exp Eye Res ; 178: 247-254, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30114413

RESUMO

Oxidative modification of proteins can perturb their structure and function, often compromising cellular viability. Such modifications include lipid-derived adducts (e.g., 4-hydroxynonenal (HNE) and carboxyethylpyrrole (CEP)) as well as nitrotyrosine (NTyr). We compared the retinal proteome and levels of such modifications in the AY9944-treated rat model of Smith-Lemli-Opitz syndrome (SLOS), in comparison to age-matched controls. Retinas harvested at 3 months of age were either subjected to proteomic analysis or to immuno-slot blot analysis, the latter probing blots with antibodies raised against HNE, CEP, and NTyr, followed by quantitative densitometry. HNE modification of retinal proteins was markedly (>9-fold) higher in AY9944-treated rats compared to controls, whereas CEP modification was only modestly (≤2-fold) greater, and NTyr modification was minimal and exhibited no difference as a function of AY9944 treatment. Anti-HNE immunoreactivity was greatest in the plexiform and ganglion cell layers, but also present in the RPE, choroid, and photoreceptor outer segment layer in AY9944-treated rats; control retinas showed minimal HNE labeling. 1D-PAGE/Western blot analysis of rod outer segment (ROS) membranes revealed HNE modification of both opsin and ß-transducin. Proteomic analysis revealed the differential expression of several retinal proteins as a consequence of AY9944 treatment. Upregulated proteins included those involved in chaperone/protein folding, oxidative and cellular stress responses, transcriptional regulation, and energy production. ßA3/A1 Crystallin, which has a role in regulation of lysosomal acidification, was down-regulated. Hence, oxidative modification of retinal proteins occurs in the SLOS rat model, in addition to the previously described oxidation of lipids. The results are discussed in the context of the histological and physiological changes that occur in the retina in the SLOS rat model.


Assuntos
Modelos Animais de Doenças , Opsinas/metabolismo , Estresse Oxidativo , Retina/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Transducina/metabolismo , Aldeídos/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Feminino , Gravidez , Proteômica , Ratos , Ratos Sprague-Dawley , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
12.
FASEB J ; 32(2): 782-794, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030399

RESUMO

The transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations. The TRPML agonist ML-SA1 raised cytoplasmic calcium levels in mouse RPE cells, hesRPE cells, and ARPE-19 cells; this increase was rapid, robust, reversible, and reproducible. The increase was not altered by extracellular calcium removal or by thapsigargin but was eliminated by lysosomal rupture with glycyl-l-phenylalanine-ß-naphthylamide. Treatment with desipramine to inhibit acid sphingomyelinase or YM201636 to inhibit PIKfyve also reduced the cytoplasmic calcium increase triggered by ML-SA1, whereas RPE cells from TRPML1-/- mice showed no response to ML-SA1. Cotreatment with chloroquine and U18666A induced formation of neutral, autofluorescent lipid in RPE lysosomes and decreased lysosomal Ca2+ release. Lysosomal Ca2+ release was also impaired in RPE cells from the ATP-binding cassette, subfamily A, member 4-/- mouse model of Stargardt's retinal dystrophy. Neither TRPML1 mRNA nor total lysosomal calcium levels were altered in these models, suggesting a more direct effect on the channel. In summary, stimulation of TRPML1 elevates cytoplasmic calcium levels in RPE cells, but this response is reduced by lysosomal accumulation.-Gómez, N. M., Lu, W. Lim, J. C., Kiselyov, K., Campagno, K. E., Grishchuk, Y., Slaugenhaupt, S. A., Pfeffer, B., Fliesler, S. J., Mitchell, C. H. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.


Assuntos
Sinalização do Cálcio , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Lisossomos/patologia , Degeneração Macular/congênito , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Ftalimidas/farmacologia , Quinolinas/farmacologia , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/genética
13.
J Lipid Res ; 64(8): 100421, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567110
14.
Molecules ; 23(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360379

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive human disease caused by mutations in the gene encoding 7-dehydrocholesterol (7DHC) reductase (DHCR7), resulting in abnormal accumulation of 7DHC and reduced levels of cholesterol in bodily tissues and fluids. A rat model of the disease has been created by treating normal rats with the DHCR7 inhibitor, AY9944, which causes progressive, irreversible retinal degeneration. Herein, we review the features of this disease model and the evidence linking 7DHC-derived oxysterols to the pathobiology of the disease, with particular emphasis on the associated retinal degeneration. A recent study has shown that treating the rat model with cholesterol plus suitable antioxidants completely prevents the retinal degeneration. These findings are discussed with regard to their translational implications for developing an improved therapeutic intervention for SLOS over the current standard of care.


Assuntos
Oxisteróis/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Animais , Colesterol/metabolismo , Desidrocolesteróis/metabolismo , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
15.
Hum Mol Genet ; 24(10): 2709-23, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637522

RESUMO

Rhodopsin, a G-protein coupled receptor, most abundant protein in retinal rod photoreceptors, is glycosylated at asparagines-2 and 15 on its N-terminus. To understand the role of rhodopsin's glycosylation in vivo, we generated and characterized a transgenic mouse model that expresses a non-glycosylated form of rhodopsin. We show that lack of glycosylation triggers a dominant form of progressive retinal degeneration. Electron microscopic examination of retinas at postnatal day 17 revealed the presence of vacuolar structures that distorted rod photoreceptor outer segments and became more prominent with age. Expression of non-glycosylated rhodopsin alone showed that it is unstable and is regulated via ubiquitin-mediated proteasomal degradation at the base of outer segments. We observed similar vacuolization in outer segments of transgenic mice expressing human rhodopsin with a T17M mutation (hT17M), suggesting that the mechanism responsible for the degenerative process in mice expressing the non-glycosylated rhodopsin and the RHO(hT17M) mice is likely the cause of phenotype observed in retinitis pigmentosa patients carrying T17M mutation.


Assuntos
Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Glicosilação , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Rodopsina/genética , Segmento Externo da Célula Bastonete/fisiologia , Ubiquitinação
18.
Exp Eye Res ; 161: 17-29, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572030

RESUMO

A duplex fluorescence assay to assess the viability of cells cultured in multi-well plates is described, which can be carried out in the original culture plate using a plate reader, without exchanges of culture or assay medium, or transfer of cells or cell supernatant. The method uses freshly prepared reagents and does not rely on a proprietary, commercially supplied kit. Following experimental treatment, calcein acetoxymethyl ester (CaAM) is added to each well of cultured cells; after 30 min, the fluorescence intensity (emission λmax âˆ¼ 530 nm) is measured. The signal is due to formation of calcein, which is produced from CaAM by action of esterase activity found in intact live cells. Since live cells may express plasma membrane multidrug transport proteins, especially of the ABC transporter family, the CaAM incubation is carried out in the presence of an inhibitor of this efflux process, thereby improving the dynamic range of the assay. Next, SYTOX® Orange (SO) is added to the culture wells, and, after a 30-min incubation, fluorescence intensity (emission λmax âˆ¼ 590 nm) is measured again. SO is excluded from cells that have an intact plasma membrane, but penetrates dead/dying cells and can diffuse into the nucleus, where it binds to and forms a fluorescent complex with DNA. The CaAM already added to the wells causes no interference with the latter fluorescent signal. At the conclusion of the duplex assay, both live and dead cells remain in the culture wells and can be documented by digital imaging to demonstrate correlation of cellular morphology with the assay output. Two examples of the application of this method are provided, using cytotoxic compounds having different mechanisms of action.


Assuntos
Células Fotorreceptoras/citologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Derivados de Benzeno/farmacologia , Bioensaio , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Dimetil Sulfóxido/farmacologia , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência , Compostos Orgânicos/química , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Saponinas/farmacologia , Estaurosporina/farmacologia
19.
Proc Natl Acad Sci U S A ; 111(39): E4086-95, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25228773

RESUMO

Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general.


Assuntos
Fator 6 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Retina/citologia , Retina/embriologia , Fatores de Transcrição/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Gravidez , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/citologia , Células Horizontais da Retina/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA