Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(24): E3431-40, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247386

RESUMO

Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.


Assuntos
Celulose , Bacilos Gram-Positivos Asporogênicos , Engenharia Metabólica/métodos , Celulose/biossíntese , Celulose/genética , Bacilos Gram-Positivos Asporogênicos/genética , Bacilos Gram-Positivos Asporogênicos/isolamento & purificação , Bacilos Gram-Positivos Asporogênicos/metabolismo
2.
Mol Ther Methods Clin Dev ; 28: 146-159, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36654797

RESUMO

The adeno-associated viral vector (AAV) provides a safe and efficient gene therapy platform with several approved products that have marked therapeutic impact for patients. However, a major bottleneck in the development and commercialization of AAV remains the efficiency, cost, and scalability of AAV production. Chromatographic methods have the potential to allow purification at increased scales and lower cost but often require optimization specific to each serotype. Here, we demonstrate that the POROS CaptureSelect AAVX affinity resin efficiently captures a panel of 15 divergent AAV serotypes, including the commonly used AAV2, AAV8, AAV9, PHP.B, and Anc80. We also find that AAVX resin can be regenerated repeatedly without loss of efficiency or carry-over contamination. While AAV preps purified with AAVX showed a higher fraction of empty capsids than preps purified using iodixanol ultracentrifugation, the potency of the AAVX purified vectors was comparable with that of iodixanol purified vectors both in vitro and in vivo. Finally, optimization of the purification protocol resulted in a process with an overall efficiency of 65%-80% across all scales and AAV serotypes tested. These data establish AAVX affinity chromatography as a versatile and efficient method for purification of a broad range of AAV serotypes.

3.
J Control Release ; 352: 994-1008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370877

RESUMO

Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-ß delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-ß production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Esclerose Múltipla/terapia , Encefalomielite Autoimune Experimental/terapia , Interferon beta/genética , Interferon beta/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL
4.
Mech Ageing Dev ; 167: 5-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28844968

RESUMO

It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging.


Assuntos
Envelhecimento , Escherichia coli/fisiologia , Schizosaccharomyces/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Divisão Celular , Replicação do DNA , Meio Ambiente , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Modelos Biológicos , Especificidade da Espécie , Células-Tronco/citologia , Estresse Fisiológico
5.
Sci Rep ; 6: 23635, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27010592

RESUMO

Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.


Assuntos
Celulose/biossíntese , Genoma Bacteriano , Gluconacetobacter/metabolismo , Modelos Biológicos , Plasmídeos , Gluconacetobacter/classificação , Gluconacetobacter/genética , Filogenia , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA