Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Biol Chem ; 299(4): 103067, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841483

RESUMO

Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.


Assuntos
Dinaminas , Glicólise , Hipertensão Pulmonar , Dinâmica Mitocondrial , Proteínas Monoméricas de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Animais , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ovinos , Modelos Animais de Doenças
2.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935150

RESUMO

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Assuntos
Biodegradação Ambiental , Genoma Bacteriano , Genômica , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiologia , Naftalenos/metabolismo , Filogenia , Fenantrenos/metabolismo , Tolerância ao Sal , Pirenos
3.
Nitric Oxide ; 140-141: 50-57, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659679

RESUMO

Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.


Assuntos
Caveolina 1 , Óxido Nítrico , Animais , Camundongos , Calcineurina/metabolismo , Calcineurina/farmacologia , Caveolina 1/genética , Células Cultivadas , Células Endoteliais/metabolismo , Endotelina-1/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
4.
Infection ; 51(5): 1549-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37058241

RESUMO

PURPOSE: The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS: An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS: Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS: BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , México/epidemiologia , COVID-19/epidemiologia , Filogenia , Mutação
5.
J Pediatr Gastroenterol Nutr ; 77(3): 327-331, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229777

RESUMO

BACKGROUND: Little is known about ileal motility patterns and their utility in children. Here, we present our experience with children undergoing ileal manometry (IM). METHODS: A retrospective review of children with ileostomy comparing IM between 2 groups: A [chronic intestinal pseudo-obstruction (CIPO)] and B (feasibility of ileostomy closure in children with defecation disorders). We also compared the IM findings with those from antroduodenal manometry (ADM), and evaluated the joint effect of age, sex, and study indication group on IM results. RESULTS: A total of 27 children (median age 5.8 years old, range 0.5-16.74 years, 16 were female) were included (12 in group A and 15 in group B). There was no association between IM interpretation and sex; however younger age was associated with abnormal IM ( P = 0.021). We found a significantly higher proportion of patients with presence of phase III of the migrating motor complex (MMC) during fasting and normal postprandial response in group B than in group A ( P < 0.001). Logistic regression analysis revealed that only Group B was associated with normal IM ( P < 0.001). We found a moderate agreement for the presence of phase III MMC and postprandial response between IM and ADM (kappa = 0.698, P = 0.008 and kappa = 0.683, P = 0.009, respectively). CONCLUSION: IM is abnormal in patients with CIPO and normal in patients with defecation disorders, suggesting that IM may be not needed for ostomy closure in those with defecation disorders. IM has a moderate agreement with ADM and could be used as a surrogate for small bowel motility.


Assuntos
Defecação , Pseudo-Obstrução Intestinal , Criança , Humanos , Feminino , Lactente , Pré-Escolar , Adolescente , Masculino , Pseudo-Obstrução Intestinal/diagnóstico , Pseudo-Obstrução Intestinal/cirurgia , Motilidade Gastrointestinal/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Intestino Delgado , Doença Crônica , Manometria/métodos
6.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139362

RESUMO

The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.


Assuntos
Hipertensão Pulmonar , Mitocôndrias , Animais , Trifosfato de Adenosina/metabolismo , Células Endoteliais/metabolismo , Glicólise , Hidrolases/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos , GTP Fosfo-Hidrolases/metabolismo
7.
Int Microbiol ; 25(1): 99-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34269948

RESUMO

Microbial biodiversity is represented by a variety of genomic landscapes adapted to dissimilar environments on Earth. These genomic landscapes contain functional signatures connected with the community phenotypes. Here, we assess the genomic microbial diversity landscape at a high-resolution level of a polluted river-associated microbiome (Morelos, México), cultured in a medium enriched with anthraquinone Deep Blue 35 dye. We explore the resultant textile dye microbiome to infer links between predicted biodegradative functions, and metagenomic and metabolic potential, especially using the information obtained from individual reconstructed genomes. By using Hi-C proximity-ligation deconvolution method, we deconvoluted 97 genome composites (80% potentially novel species). The main taxonomic determinants were Methanobacterium, Clostridium, and Cupriavidus genera constituting 50, 22, and 11% of the total community profile. Also, we observed a rare biosphere of novel taxa without clear taxonomic standing. Removal of 50% chemical oxygen demand with 23% decolorization was observed after 30 days of dye enrichment. Genes related to catalase-peroxidase, polyphenol oxidase, and laccase enzymes were predicted as associated with textile dye biodegradation phenotype under our study conditions, highlighting the potential of metagenome-wide analysis to predict biodegradative determinants. This study prompts high-resolution screening of individual genomes within textile dye river sediment microbiomes or complex communities under environmental pressures.


Assuntos
Microbiota , Biodegradação Ambiental , Metagenoma , Fenótipo , Têxteis
8.
BMC Infect Dis ; 22(1): 792, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261802

RESUMO

BACKGROUND: SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized. METHODS: In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. RESULTS: Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. CONCLUSIONS: Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis.


Assuntos
COVID-19 , Coinfecção , Vírus , Humanos , SARS-CoV-2/genética , Coinfecção/epidemiologia , Vírus/genética , DNA Circular , Índice de Gravidade de Doença
9.
J Pediatr Gastroenterol Nutr ; 75(5): 578-583, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35897140

RESUMO

OBJECTIVES: Pediatric functional constipation (FC) may require invasive evaluations [like colon manometry (CM)] and surgical interventions [including diverting ostomy (DO)]. We evaluated the utility of CM in guiding surgery after DO. METHODS: Children with medically refractory FC undergoing an ostomy were included. Institutional Review Board approval was obtained for this retrospective study. Demographics and CM variables [high amplitude propagating contractions (HAPCs)] were recorded. Outcome measures: response to ostomy closure defined as successful if no need for further surgery after ostomy closure, and improvement on baseline CM after ostomy. A CM-guided ostomy closure algorithm was developed based on previous studies. We evaluated the association between response to ostomy closure and demographics, ostomy indication and CM improvement, and evaluated the role of CM predicting response using algorithm. RESULTS: A total of 60 children underwent ostomy for FC (median age: 7.1 years, range 0.15-23.6 years, 50% female). Ostomy was closed in 30 patients and deemed successful in 23 of 30. CM was performed in 42 of 60 patients before ostomy and in 29 of 30 before ostomy closure. We found no association between ostomy outcome and age, gender, weight, imaging studies, follow-up time, time with ostomy, HAPCs, and CM improvement. We found an association between failed response and ostomy indication of antegrade colonic enemas (ACE) failure ( P = 0.026) and successful response when ostomy closure was guided by algorithm ( P = 0.03). CONCLUSIONS: DO is a useful intervention in selected children with medically refractory FC, improving colon motility in most. CM can successfully guide the timing and type of ostomy closure. Larger studies are needed to further validate our findings.


Assuntos
Constipação Intestinal , Ileostomia , Humanos , Criança , Feminino , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Masculino , Estudos Retrospectivos , Constipação Intestinal/cirurgia , Colo/cirurgia , Manometria/métodos , Motilidade Gastrointestinal/fisiologia
11.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641486

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to enabling implementation of effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage A/G, containing mostly sequences from North America, and lineage B/S, containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized 14 independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represented local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described for the country. Within this local transmission cluster, we also identified an H49Y amino acid change in the Spike protein. This mutation represents a homoplasy occurring independently through time and space and may function as a molecular marker to follow any further spread of these viral variants throughout the country. Our results provide a general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts.IMPORTANCE Understanding the introduction, spread, and establishment of SARS-CoV-2 within distinct human populations as well as the evolution of the pandemics is crucial to implement effective control strategies. In this work, we report that the initial virus strains introduced in Mexico came from Europe and the United States and that the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains with a H49Y mutation in the Spike protein, which could be further used as a molecular marker to follow viral spread within the country and the region.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Variação Genética , Genoma Viral , Genômica , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Substituição de Aminoácidos , Betacoronavirus/classificação , COVID-19 , Biologia Computacional/métodos , Infecções por Coronavirus/transmissão , Genômica/métodos , Humanos , México/epidemiologia , Mutação , Pandemias , Filogenia , Pneumonia Viral/transmissão , SARS-CoV-2
12.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448936

RESUMO

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , COVID-19/transmissão , Genoma Viral/genética , Humanos , México/epidemiologia , Mutação , Filogenia , Prevalência , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
13.
Plant Dis ; 105(9): 2618-2627, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33393360

RESUMO

Chilhuacle negro chili (Capsicum annuum L.) is an ancient Mexican landrace that is deeply linked to the culinary heritage of the country. Because of the high profitability and uniqueness of this crop, the Universidad Autónoma del Estado de Morelos is exploring its production in controlled environments. In the crop cycles of 2018 to 2019, the production of chilhuacle negro plants was seriously affected by an unidentified pathogen causing fruit rot, which reduced its quality, yield, and market value. Therefore, the main objective of this work was to study and characterize the fruit microbiota, which could help reveal the causal agent of this disease. Using DNA metabarcoding coupled with Illumina and nanopore sequencing technologies, we collected and analyzed both healthy and infected chili fruit, along with greenhouse bioaerosols. We also explored the bacterial and fungal microbiota by using microbiological techniques to isolate some of the culturable bacterial and fungal species. Our results suggest that the seedborne fungus Alternaria alternata is activated during the maturation stage of chilhuacle negro fruit, triggering a microbiome imbalance, which may in turn enable the establishment of other opportunistic pathogenic fungi during fruit decay, such as Mucor sp. To our knowledge, this is the first study of the chilhuacle negro chili microbiome, which can shed some light on our understanding of one of the main diseases that affect this valuable crop.


Assuntos
Capsicum , Micobioma , Negro ou Afro-Americano , Frutas , Humanos
14.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932315

RESUMO

Activation of the two-component system formed by CckA, ChpT, and CtrA (kinase, phosphotransferase, and response regulator, respectively) in Rhodobacter sphaeroides does not occur under the growth conditions commonly used in the laboratory. However, it is possible to isolate a gain-of-function mutant in CckA that turns the system on. Using massive parallel transcriptome sequencing (RNA-seq), we identified 321 genes that are differentially regulated by CtrA. From these genes, 239 were positively controlled and 82 were negatively regulated. Genes encoding the Fla2 polar flagella and gas vesicle proteins are strongly activated by CtrA. Genes involved in stress responses as well as several transcriptional factors are also positively controlled, whereas the photosynthetic and CO2 fixation genes are repressed. Potential CtrA-binding sites were bioinformatically identified, leading to the proposal that at least 81 genes comprise the direct regulon. Based on our results, we ponder that the transcriptional response orchestrated by CtrA enables a lifestyle in which R. sphaeroides will effectively populate the surface layer of a water body enabled by gas vesicles and will remain responsive to chemotactic stimuli using the chemosensoring system that controls the Fla2 flagellum. Simultaneously, fine-tuning of photosynthesis and stress responses will reduce the damage caused by heat and high light intensity in this water stratum. In summary, in this bacterium CtrA has evolved to control physiological responses that allow its adaptation to a particular lifestyle instead of controlling the cell cycle as occurs in other species.IMPORTANCE Cell motility in Alphaproteobacteria is frequently controlled by the CckA, ChpT, and CtrA two-component system. Under the growth conditions commonly used in the laboratory, ctrA is transcriptionally inactive in Rhodobacter sphaeroides, and motility depends on the Fla1 flagellar system that was acquired by a horizontal transfer event. Likely, the incorporation of this flagellar system released CtrA from the strong selective pressure of being the main motility regulator, allowing this two-component system to specialize and respond to some specific conditions. Identifying the genes that are directly regulated by CtrA could help us understand the conditions in which the products of this regulon are required. Massive parallel transcriptome sequencing (RNA-seq) revealed that CtrA orchestrates an adaptive response that contributes to the colonization of a particular environmental niche.


Assuntos
Adaptação Biológica , Regulação Bacteriana da Expressão Gênica , Rhodobacter sphaeroides/fisiologia , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Sequência Conservada , Perfilação da Expressão Gênica , Fotossíntese , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/metabolismo
15.
Am J Gastroenterol ; 115(11): 1830-1839, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33156102

RESUMO

INTRODUCTION: Adult standards for gastric emptying scintigraphy, including the type of meal and range of normative values for percent gastric emptying, are routinely used in pediatric practice, but to date have not been validated. The purpose of this study is to determine whether the use of adult criteria for gastric emptying scintigraphy is valid for children and whether alternative nonstandard meals can also be offered based on these criteria. METHODS: This retrospective study analyzed patients (n = 1,151 total) who underwent solid-phase gastric emptying scintigraphy. Patients were stratified into normal and delayed gastric emptying cohorts based on adult criteria, i.e., with normal gastric emptying defined as ≤10% gastric retention at 4 hours. Patients were further stratified based on the type of meal, namely complete or partial adult standard meals or alternative cheese-based meals. Percent gastric retention values at 1, 2, 3, and 4 hours were compared. RESULTS: The median (95% upper reference limit) percentage gastric retention values for the complete standard meal were 72% (93%) at 1 hour, 39% (65%) at 2 hours, 15% (33%) at 3 hours, and 6% (10 %) at 4 hours. By comparison, the values for cheese-based meals were 60% (87%) at 1 hour, 29% (61%) at 2 hours, 10% (30%) at 3 hours, and 5% (10%) at 4 hours. Consumption of at least 50% of the standard meal yielded similar retention percentages; 68% (89%) at 1 hour, 32% (57%) at 2 hours, 10% (29%) at 3 hours, and 5% (10%) at 4 hours. There were no significant age- or sex-specific differences using the adult criteria. DISCUSSION: The adult normative standards for gastric emptying scintigraphy are applicable for use in the pediatric population. These same standards can be also be applied to nonstandard meal options, including cheese-based alternative meals and partial standard meals.


Assuntos
Técnicas de Diagnóstico do Sistema Digestório , Esvaziamento Gástrico , Refeições , Cintilografia/métodos , Compostos Radiofarmacêuticos , Adolescente , Queijo , Criança , Ovos , Feminino , Alimentos , Humanos , Masculino , Valores de Referência , Adulto Jovem
16.
J Pediatr Gastroenterol Nutr ; 71(2): e59-e67, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32287151

RESUMO

OBJECTIVES: Motility and functional disorders are common in children and often debilitating, yet these disorders remain challenging to treat effectively. At the 2018 Annual North American Society for Pediatric Gastroenterology, Hepatology and Nutrition meeting, the Neurogastroenterology and Motility Committee held a full day symposium entitled, 2018 Advances In Motility and In NeuroGastroenterology - AIMING for the future. The symposium aimed to explore clinical paradigms in pediatric gastrointestinal motility disorders and provided a foundation for advancing new scientific and therapeutic research strategies. METHODS: The symposium brought together leading experts throughout North America to review the state of the art in the diagnosis and management of motility and functional disorders in children. Presentations were divided into esophageal, antral duodenal, and colorectal modules. Each module included oral presentations by experts in the respective fields, leading to thought-provoking discussions. There were 2 breakout sessions with small group discussions on select topics, focusing on defining scientific insights into the diagnosis and management of pediatric functional gastrointestinal and motility disorders in a systematic, segment-based approach. CONCLUSIONS: The field of neurogastroenterology has made remarkable progress in the last decade. The current report summarizes the major learning points from the symposium highlighting the diagnosis and promising therapies on the horizon for pediatric neurogastrointestinal and motility disorders.


Assuntos
Gastroenterologia , Gastroenteropatias , Criança , Esôfago , Gastroenteropatias/diagnóstico , Gastroenteropatias/terapia , Motilidade Gastrointestinal , Humanos , América do Norte
17.
Exp Cell Res ; 375(1): 31-41, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557557

RESUMO

Studies have described the presence of pluripotent markers in vivo and in vitro in human amnion. However, the amnion can be divided into reflected, placental and umbilical regions that are anatomically and functionally heterogeneous. Here, we evaluated the expression of pluripotency markers in tissue and cultivated cells in vitro of different regions of human amnion. To this end, we determined the presence of the core pluripotency factors OCT-4, NANOG and SOX-2 by immunofluorescence and RT-PCR and also performed transcriptome analysis of the different regions of amnion tissue. We identified the mRNA and protein of the pluripotency factors in the different regions of human amnion tissue. However, the OCT-4 and NANOG immunolocalization was cytoplasmic, whereas SOX-2 immunolocalization was nuclear regardless of the region analyzed. Moreover, we found three subpopulations of cells in the in vitro cultures of reflected and placental amnion: cells with immunostaining only in the nucleus, only in the cytoplasm, or in both compartments. Yet no statistically significant differences were found between the reflected and placental amnion. These results suggest a homogeneous distribution of the pluripotency transcription factors of the different regions of human amnion to isolate stem cells that can be used in regenerative medicine.


Assuntos
Âmnio/metabolismo , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Âmnio/crescimento & desenvolvimento , Biomarcadores/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Fatores de Transcrição SOXB1/genética
18.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
19.
Mol Genet Genomics ; 293(5): 1205-1216, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948331

RESUMO

It has been presumed that increased susceptibility in Mexicans to type 2 diabetes (T2D) is attributed to the Native American genetic ancestry. Nonetheless, it is not known if there are private genetic variants that confer susceptibility to develop T2D in our population. The Maya indigenous group has the highest proportion of Native American ancestry (98%) which makes it a representative group of the original peoples of Mexico. Thus, the aim of the present study is to identify new genetic variants associated with T2D in Maya families. Whole-exome sequencing was performed on DNA samples from Maya families with a third-generation family history of T2D only in one parental line. Four variants were identified for APOB, PPP1R3A, TPPP2, and GPR1 genes, and were further tested for association with T2D in 600 unrelated Maya in a case-control study. For the first time, rs1799999 in PPP1R3A was associated with risk of T2D in Mayan Mexican individuals (OR = 1.625, P = 0.014). Interestingly, carriers of rs1799999 presented increased values of HOMA-IR. In addition, rs1801702 in APOB was associated with total cholesterol and LDL-C (P = 0.019 and P = 0.020, respectively) in normoglycemic individuals; rs3732083 in GPR1 with HOMA-IR (P = 0.016) and rs9624 in TPPP2 with total cholesterol and triglycerides (P = 0.002 and P = 0.005, respectively) in T2D subjects. Overall, these findings support the idea that there are other genetic variants yet to be described, involved in T2D development in Maya population, being insulin resistance and lipid metabolism the main mechanisms implicated. Thus, these results can contribute to the understanding of diabetes genetic background in Mexican population.


Assuntos
Diabetes Mellitus Tipo 2/genética , Exoma , Predisposição Genética para Doença , Fosfoproteínas Fosfatases/genética , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/genética , Adulto , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Resistência à Insulina , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Linhagem , Fatores de Risco
20.
Extremophiles ; 22(6): 903-916, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120599

RESUMO

Bacterial and archaeal community structure of five microbial communities, developing at different salinities in Baja California Sur, Mexico, were characterized by 16S rRNA sequencing. The response of the microbial community to artificial changes in salinity-sulfate concentrations and to addition of trimethylamine was also evaluated in microcosm experiments. Ordination analyses of the microbial community structure showed that microbial composition was distinctive for each hypersaline site. Members of bacteria were dominated by Bacteroidetes and Proteobacteria phyla, while Halobacteria of the Euryarchaeota phylum was the most represented class of archaea for all the environmental samples. At a higher phylogenetic resolution, methanogenic communities were dominated by members of the Methanosarcinales, Methanobacteriales and Methanococcales orders. Incubation experiments showed that putative hydrogenotrophic methanogens of the Methanomicrobiales increased in abundance only under lowest salinity and sulfate concentrations. Trimethylamine addition effectively increased the abundance of methylotrophic members from the Methanosarcinales, but also increased the relative abundance of the Thermoplasmata class, suggesting the potential capability of these microorganisms to use trimethylamine in hypersaline environments. These results contribute to the knowledge of microbial diversity in hypersaline environments from Baja California Sur, Mexico, and expand upon the available information for uncultured methanogenic archaea in these ecosystems.


Assuntos
Metano/biossíntese , Microbiota , Salinidade , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA