Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 45(4): 1683-92, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16471981

RESUMO

Reaction between 7-azaindole and B(C6F5)3 quantitatively yields 7-(C6F5)3B-7-azaindole (4), in which B(C6F5)3 coordinates to the pyridine nitrogen of 7-azaindole, leaving the pyrrole ring unreacted even in the presence of a second equivalent of B(C6F5)3. Reaction of 7-azaindole with H2O-B(C6F5)3 initially produces [7-azaindolium]+[HOB(C6F5)3]- (5) which slowly converts to 4 releasing a H2O molecule. Pyridine removes the borane from the known complexes (C6F5)3B-pyrrole (1) and (C6F5)3B-indole (2), with formation of free pyrrole or indole, giving the more stable adduct (C6F5)3B-pyridine (3). The competition between pyridine and 7-azaindole for the coordination with B(C6F5)3 again yields 3. The molecular structures of compounds 4 and 5 have been determined both in the solid state and in solution and compared to the structures of other (C6F5)3B-N-heterocycle complexes. Two dynamic processes have been found in compound 4. Their activation parameters (DeltaH = 66 (3) kJ/mol, DeltaS = -18 (10) J/mol K and DeltaH = 76 (5) kJ/mol, DeltaS = -5 (18) J/mol K) are comparable with those of other (C6F5)3B-based adducts. The nature of the intramolecular interactions that result in such energetic barriers is discussed.

2.
Inorg Chem ; 44(14): 5030-41, 2005 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-15998031

RESUMO

The previously known anion [(C6F5)3B(mu-OH)B(C6F5)3]- (2) has been prepared by a two-step procedure, involving deprotonation of (C6F5)3BOH2 to give [B(C6F5)3OH]- (1), followed by addition of B(C6F5)3. The solution structure and the dynamics of 2 have been investigated by 1H and 19F NMR spectroscopy. The reaction of [NHEt3]2 with NEt3 resulted in the formation of [NHEt3]+ [(C6F5)3BOH]-, [NHEt3]+ [(C6F5)3BH]-, and (C6F5)3B- (CH2CH=N+ Et2). This indicates that in the presence of a nucleophile anion 2 can dissociate to B(C6F5)3 and 1. The reaction of [HDMAN]2 with 1,8-bis(dimethylamino)naphthalene (DMAN) confirmed this trend. In the presence of water, 2 transformed into the adduct [(C6F5)3BO(H)H...O(H)B(C6F5)3]- (3), containing the borate 1 hydrogen-bonded to a water molecule coordinated to B(C6F5)3. The same compound is formed by treating (C6F5)3BOH2 with 0.5 equiv of a base. A competition study established that for 1 the Lewis acid-base interaction with B(C6F5)3 is about 5 times preferred over H-bonding to (C6F5)3BOH2. The X-ray single-crystal analysis of [2-methyl-3H-indolium]3 provided the first experimental observation of an asymmetric H-bond in the [H3O2]- moiety, the measured O-H and H...O bond distances being significantly different [1.14(2) vs 1.26(2) A]. The reaction of NEt3 with an equimolar mixture of B(C6F5)3 and bis(pentafluorophenyl)borinic acid, (C6F5)2BOH, afforded the novel borinatoborate salt [NHEt3]+ [(C6F5)3BOB(C6F5)2]- ([NHEt3]4). X-ray diffraction showed that the B-O bond distances are significantly shorter than in [(C6F5)3B(mu-OH)B(C6F5)3]-. Variable-temperature 19F NMR revealed high mobility of the five aryl rings, at variance with the more crowded anion 2. 2D NMR correlation experiments showed that in CD2Cl2 the two anions [(C6F5)3BOH]- and [(C6F5)3BH]- form tight ion pairs with [NHEt3]+, in which the NH proton establishes a conventional (BO...HN) or an unconventional (BH...HN), respectively, hydrogen bond with the anion. The diborate anions 2-4, on the contrary, gave loose ion pairs with the ammonium cation, due both to the delocalized anionic charge and to the more sterically encumbered position of the oxygen atoms that should act as H-bond acceptors.

3.
J Org Chem ; 68(14): 5445-65, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12839436

RESUMO

The reaction of pyrroles and indoles with B(C(6)F(5))(3) and BCl(3) produces 1:1 B-N complexes containing highly acidic sp(3) carbons, for example, N-[tris(pentafluorophenyl)borane]-5H-pyrrole (1) and N-[tris(pentafluorophenyl)borane]-3H-indole (2), that are formed by a new formal N-to-C hydrogen shift, the mechanism of which is discussed. With some derivatives, restricted rotation around the B-N bond and/or the B-C bonds was observed by NMR techniques, and some rotational barriers were calculated from experimental data. The acidity of the sp(3) carbons in these complexes is shown by their ability to protonate NEt(3), with formation of pyrrolyl- and indolyl-borate ammonium salts. The driving force for this reaction is given by the restoration of the aromaticity of the heterocycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA