RESUMO
Graded concentrations (200, 400 and 800 mg/kg) of the aqueous stem bark extract of Khaya senegalensis was evaluated for its therapeutic efficacy against experimentally induced coccidiosis in broiler chicken. The phytochemical analysis shows the presence of tannins, saponins, cardiac glycosides and steroids. There was significant reduction in oocyst count across the groups in a graded dose manner with 800 mg/kg being the most efficacious dose. There was also weight gain across the treatment groups with immuno-modulatory and erythropoetic activities observed. Also, a significant (p < 0.05) graded dose-dependent reduction in the oocyst count in the treatment groups. A significant (p < 0.05) increase in mean weight gain was also recorded across the experimental groups except the negative control. The haematology also showed a dose-dependent increase in red blood cells, haemoglobin and packed cell volume of the treatment groups. The extract had no significant difference (p > 0.05) on the white blood cells, but a slight decrease in the white blood cells and heterophil counts was observed at 400 mg/kg. Furthermore, the aspartate amino transaminase level showed a significant difference (p < 0.05). Fluctuating levels of other serum biochemical parameters such as total protein, albumin and potassium were observed. No significant difference (p > 0.05) in the sodium concentration was observed. In addition, oxidative stress biomarkers such as catalase significantly increased (p < 0.05) in all the experimental groups in addition to the concomitant increase in reduced gluthathione (GSH) and superoxide dismutase (SOD) levels. Conclusively, the aqueous extract of K. senegalensis was effective in the management of coccidiosis thus supporting its folkloric use.
Assuntos
Galinhas , Coccidiose/veterinária , Coccidiostáticos/farmacologia , Eimeria/efeitos dos fármacos , Meliaceae/química , Extratos Vegetais/uso terapêutico , Animais , Coccidiose/tratamento farmacológico , Coccidiostáticos/química , Oocistos/efeitos dos fármacos , Fitoterapia , Casca de Planta/química , Extratos Vegetais/química , Doenças das Aves Domésticas/tratamento farmacológico , Aumento de Peso/efeitos dos fármacosRESUMO
The investigation into the potential health risks associated with the use of engineered nanoparticles is a major scientific interest in recent years. The present study elucidated the involvement of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in carboxylated multi-walled carbon nanotubes (MWCNTs)-induced hepatotoxicity. Pubertal rats were exposed to purified MWCNTs at 0, 0.25, 0.50, 0.75 and 1.0â¯mg/kg for 5 consecutive days. Results indicated that exposure to MWCNTs caused liver damage evidenced by significant elevation in serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) when compared with control. Moreover, MWCNTs significantly decreased superoxide dismutase (SOD) and glutathione S-transferase (GST) activities as well as glutathione level whereas it significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities in liver of the treated rats. Moreover, the dose-dependent increase in hepatic hydrogen peroxide (H2O2) and lipid peroxidation levels were accompanied by marked increase in micronucleated polychromatic erythrocytes (MNPCE) in the MWCNTs-treated rats. Administration of MWCNTs significantly increased serum concentrations of pro-inflammatory cytokines namely interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the treated rats. Immunohistochemical analysis showed significantly increased COX-2 and iNOS protein expressions in the liver of MWCNTs-treated rats. In conclusion, carboxylated MWCNTs induces hepatic damage via disruption of antioxidant defense systems, promotion of pro-inflammatory cytokines generation and expression of COX-2 and i-NOS in rats.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citocinas/imunologia , Fígado/efeitos dos fármacos , Nanotubos de Carbono/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Nanotubos de Carbono/química , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/imunologia , Ratos WistarRESUMO
The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg(-1) functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f-MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction.
Assuntos
Epididimo/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Epididimo/metabolismo , Epididimo/patologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoensaio , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Testículo/patologia , Testosterona/sangueRESUMO
BACKGROUND: Kolaviron (KV) is a flavonoid-rich portion obtained from Garcinia kola seeds with a number of reported pharmacological effects. However, its ameliorative effects on 7,12-Dimethylbenzanthracene (DMBA)-induced mammary damage has not been fully investigated, despite the reported use of the seeds in the treatment of inflammatory related disorders. OBJECTIVE: To evaluate the ameliorative effects of KV on DMBA-induced mammary damage in female Wistar rats. METHODS: Forty-nine (49) female Wistar rats were randomly assigned into seven groups of seven rats each. DMBA was administered orally to rats in five of the groups as a single dose of 80 mg/kg body wt while the remaining two groups received the vehicle. The rats were palpated weekly for 3 months to monitor tumor formation. After 3 months of DMBA administration, 1 ml of blood was collected to assay for estrogen receptor- α (ER-α) level. Thereafter, the vehicle (dimethyl sulfoxide) was daily administered to the negative control and positive control groups for the 14 days duration of the experiment while three groups were each given a daily oral dose of 50, 100, and 200 mg/kg body wt of KV for the duration of the experiment. The last DMBA-induced group received 10 mg/kg body wt of the standard drug tamoxifen twice a week, and the remaining DMBA-free group received 200 mg/kg body wt KV. Subsequently, the animals were humanely sacrificed, and ER-α, sialic acids, sialidase, sialyltransferase levels were assayed in blood and mammary tissues followed by histopathological examinations. RESULTS: Significantly higher levels of estrogen receptor-α (ER-α), formation of lobular neoplastic cells, epithelial hyperplasia, lymphocyte infiltration, and increased sialylation were detected in DMBA-induced rats. Treatment with KV at 50, 100, and 200 mg/kg body weight resulted in a significant (p<0.05) decrease in ER-α level, free serum sialic acid (21.1%), the total sialic acid level of the mammary tissue (21.57%), sialyltransferase activity (30.83%) as well as mRNA level of the sialyltransferase gene (ST3Gal1) were observed after KV interventions. CONCLUSION: The findings suggest that KV could be further explored in targeting DMBA-induced mammary damage implicated in mammary carcinogenesis.
Assuntos
9,10-Dimetil-1,2-benzantraceno/antagonistas & inibidores , Mama/efeitos dos fármacos , Flavonoides/farmacologia , 9,10-Dimetil-1,2-benzantraceno/administração & dosagem , 9,10-Dimetil-1,2-benzantraceno/efeitos adversos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Mama/patologia , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/sangue , Feminino , Flavonoides/administração & dosagem , Ratos , Ratos Wistar , Relação Estrutura-AtividadeRESUMO
Breast cancer as a multifactorial disease has been classified among the major causes of morbidity and mortality in women across the world, with a higher prevalence among post-menopausal women. Osteoporosis, a condition characterized by altered bone mineralization is also commonly found among post-menopausal women. Consequently, post-menopausal women are at risk of morbidity and mortality associated with breast cancer and postmenopausal osteoporosis. This may not be unconnected to the fact that, there may be existent biochemical links between the two mayhems, which might rally round between the cellular and molecular connectivity based on the actions and inactions of RANKL, estrogen, free radicals-induced oxidative stress and metabolic implications of age related obesity among others. Cells and tissues including breast and bone are more prone to oxidative stress with age, and oxidative stress could alter the activity of key proteins and pathways required for protection against breast cancer and osteoporosis. As a result, the potentials of antioxidant rich functional foods in preventing, managing and possibly treating breast cancer and postmenopausal osteoporosis cannot be overemphasised. This review mainly uses ISI, SCOPUS and PubMed indexed journals and books containing various experimental reports vacillating from humans, animals and in vitro studies in relation to breast cancer and postmenopausal osteoporosis, biochemical links and possible beneficial effects of functional foods. One distinct feature of the review is that it categorically intends to provide a critical appraisal on the said available experimental data within the variables of breast cancer and osteoporosis among females vis-à-vis the potentials of functional foods.