Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(10): 102501, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867514

RESUMO

The structure of 44S has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 2(1)+ and 0(1)+ states, measured for the first time, lead to a reduced transition probability B(E2: 2(1)+→0(2)+)=8.4(26) e(2) fm4 and a monopole strength ρ2(E0: 0(2)+→0(1)+)=8.7(7)×10(-3). Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.

2.
Phys Rev Lett ; 102(9): 092501, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392514

RESUMO

We report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)]. The 7/2- spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

3.
Langmuir ; 23(8): 4569-74, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17355155

RESUMO

Rh/CeO2 catalysts submitted to different H2 reduction, Ar+ sputtering, and oxidation treatments have been studied by X-ray photoelectron (XPS) and 1H nuclear magnetic resonance (NMR) spectroscopies. Depending on the reduction temperature, two stages have been identified in the reduction of the catalyst: below 473 K, reduction increases the amount of OH and Ce3+ species; above this temperature, reduction produces oxygen vacancies at the surface of the support. Volumetric and microcalorimetric techniques have been used to study hydrogen adsorption on the catalyst, and 1H NMR spectroscopy was used to differentiate hydrogen adsorbed on the metal from that adsorbed on the support. From 1H NMR and TEM results, the main metal particle size (38 A) in the Rh/CeO2 catalyst has been estimated. The influence of the support reduction on the metal adsorption capacity has also been investigated, showing that formation of oxygen vacancies at the metal-support interface enhances the electronic perturbation and decreases the hydrogen adsorption on metal particles. The comparison of data reported on catalysts of high and low surface area supports has shown that both processes are shifted to higher temperatures in the Rh/CeO2 catalyst of lower surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA