Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neurobiol Dis ; 181: 106116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054900

RESUMO

Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy. With this in mind, we have developed a model of tauopathy by overexpression of the human wild-type Tau protein in retinal ganglion cells in mice (RGCs). This overexpression led to the presence of hyperphosphorylated forms of the protein in the transduced cells as well as to their progressive degeneration. The application of this model to mice deficient in TREM2 (Triggering Receptor Expressed on Myeloid cells-2, an important genetic risk factor for AD) as well as to 15-month-old mice showed that microglia actively participate in the degeneration of RGCs. Surprisingly, although we were able to detect the transgenic Tau protein up to the terminal arborization of RGCs at the level of the superior colliculi, spreading of the transgenic Tau protein to post-synaptic neurons was detected only in aged animals. This suggests that there may be neuron-intrinsic- or microenvironment mediators facilitating this spreading that appear with aging.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/patologia , Vias Visuais/metabolismo
2.
J Neuroinflammation ; 20(1): 64, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890536

RESUMO

BACKGROUND: Increasing evidence supports a key role for peripheral immune processes in the pathophysiology of Alzheimer's disease (AD), highlighting an intricate interplay between brain resident glial cells and both innate and adaptive peripheral immune effectors. We previously showed that regulatory T cells (Tregs) have a beneficial impact on disease progression in AD-like pathology, notably by modulating the microglial response associated with Aß deposits in a mouse model of amyloid pathology. Besides microglia, reactive astrocytes also play a critical role in neuroinflammatory processes associated with AD. Different phenotypes of reactive astrocytes have previously been characterized, including A1-like neurotoxic and A2-like neuroprotective subtypes. However, the precise impact of Tregs on astrocyte reactivity and phenotypes in AD still remains poorly defined. METHODS: We assessed the impact of Treg immunomodulation on astrocyte reactivity in a mouse model of AD-like amyloid pathology. Using 3D imaging, we carried out extensive morphological analyses of astrocytes following either depletion or amplification of Tregs. We further assessed the expression of several A1- and A2-like markers by immunofluorescence and RT-qPCR. RESULTS: Modulation of Tregs did not significantly impact the magnitude of global astrocyte reactivity in the brain nor in the close vicinity of cortical amyloid deposits. We did not observe changes in the number, morphology, or branching complexity of astrocytes according to immunomodulation of Tregs. However, early transient depletion of Tregs modulated the balance of reactive astrocyte subtypes, resulting in increased C3-positive A1-like phenotypes associated with amyloid deposits. Conversely, early depletion of Tregs decreased markers of A2-like phenotypes of reactive astrocytes associated with larger amyloid deposits. Intriguingly, modulation of Tregs also impacted the cerebral expression of several markers of A1-like subsets in healthy mice. CONCLUSIONS: Our study suggests that Tregs contribute to modulate and fine-tune the balance of reactive astrocyte subtypes in AD-like amyloid pathology, by dampening C3-positive astrocytes in favor of A2-like phenotypes. This effect of Tregs may partly relate to their capacity at modulating steady state astrocyte reactivity and homeostasis. Our data further highlight the need for refined markers of astrocytes subsets and strategy of analysis for better deciphering the complexity of astrocyte reactivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Linfócitos T Reguladores , Camundongos Transgênicos , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo
3.
Development ; 145(2)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343636

RESUMO

During development, precerebellar neurons migrate tangentially from the dorsal hindbrain to the floor plate. Their axons cross it but their cell bodies stop their ventral migration upon reaching the midline. It has previously been shown that Slit chemorepellents and their receptors, Robo1 and Robo2, might control the migration of precerebellar neurons in a repulsive manner. Here, we have used a conditional knockout strategy in mice to test this hypothesis. We show that the targeted inactivation of the expression of Robo1 and Robo2 receptors in precerebellar neurons does not perturb their migration and that they still stop at the midline. The selective ablation of the expression of all three Slit proteins in floor-plate cells has no effect on pontine neurons and only induces the migration of a small subset of inferior olivary neurons across the floor plate. Likewise, we show that the expression of Slit proteins in the facial nucleus is dispensable for pontine neuron migration. Together, these results show that Robo1 and Robo2 receptors act non-cell autonomously in migrating precerebellar neurons and that floor-plate signals, other than Slit proteins, must exist to prevent midline crossing.


Assuntos
Movimento Celular/fisiologia , Cerebelo/embriologia , Glicoproteínas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores Imunológicos/fisiologia , Animais , Cerebelo/citologia , Feminino , Glicoproteínas/deficiência , Glicoproteínas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Gravidez , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Roundabout
4.
J Neurosci ; 39(7): 1150-1168, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30587537

RESUMO

The cornea has the densest sensory innervation of the body, originating primarily from neurons in the trigeminal ganglion. The basic principles of cornea nerve patterning have been established many years ago using classic neuroanatomical methods, such as immunocytochemistry and electrophysiology. Our understanding of the morphology and distribution of the sensory nerves in the skin has considerably progressed over the past few years through the generation and analysis of a variety of genetically modified mouse lines. Surprisingly, these lines were not used to study corneal axons. Here, we have screened a collection of transgenic and knockin mice (of both sexes) to select lines allowing the visualization and genetic manipulation of corneal nerves. We identified multiple lines, including some in which different types of corneal axons can be simultaneously observed with fluorescent proteins expressed in a combinatorial manner. We also provide the first description of the morphology and arborization of single corneal axons and identify three main types of branching pattern. We applied this genetic strategy to the analysis of corneal nerve development and plasticity. We provide direct evidence for a progressive reduction of the density of corneal innervation during aging. We also show that the semaphorin receptor neuropilin-1 acts cell-autonomously to control the development of corneal axons and that early axon guidance defects have long-term consequences on corneal innervation.SIGNIFICANCE STATEMENT We have screened a collection of transgenic and knockin mice and identify lines allowing the visualization and genetic manipulation of corneal nerves. We provide the first description of the arborization pattern of single corneal axons. We also present applications of this genetic strategy to the analysis of corneal nerve development and remodeling during aging.


Assuntos
Córnea/inervação , Plasticidade Neuronal/genética , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular , Córnea/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Neuropilina-1/genética , Tamoxifeno/farmacologia
5.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100091

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animais , Criança , Exoma/genética , Feminino , Feto/anormalidades , Heterozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética
6.
Hum Mol Genet ; 25(14): 3070-3079, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288449

RESUMO

Dystrophin-Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells that provide a mechanical link at the Müller cell membrane by direct binding to actin and a transmembrane protein complex. Its absence has been related to blood-retinal barrier (BRB) permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels (1). We have previously shown that the adeno-associated virus (AAV) variant, ShH10, transduces Müller cells in the Dp71-null mouse retina efficiently and specifically (2,3). Here, we use ShH10 to restore Dp71 expression in Müller cells of Dp71 deficient mouse to study molecular and functional effects of this restoration in an adult mouse displaying retinal permeability. We show that strong and specific expression of exogenous Dp71 in Müller cells leads to correct localization of Dp71 protein restoring all protein interactions in order to re-establish a proper functional BRB and retina homeostasis thus preventing retina from oedema. This study is the basis for the development of new therapeutic strategies in dealing with diseases with BRB breakdown and macular oedema such as diabetic retinopathy (DR).


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Distrofina/genética , Edema/terapia , Terapia Genética , Animais , Dependovirus/genética , Distrofina/deficiência , Distrofina/uso terapêutico , Edema/genética , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Retina/crescimento & desenvolvimento , Retina/patologia
7.
Biotechnol Bioeng ; 113(12): 2712-2724, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27259396

RESUMO

Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos/genética , Proteínas Recombinantes/metabolismo , Retina/virologia , Transdução Genética/métodos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Variação Genética/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Proteínas Recombinantes/genética , Retina/fisiologia
8.
Glia ; 63(4): 699-717, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25530205

RESUMO

Oligodendrocytes are the myelinating cells of the central nervous system. Multiple markers are available to analyze the populations of oligodendroglial cells and their precursors during development and in pathological conditions. However, the behavior of oligodendrocytes remains poorly characterized in vivo, especially at the level of individual cells. Studying this aspect has been impaired so far by the lack of suitable methods for visualizing single oligodendrocytes, their processes, and their interactions during myelination. Here, we have used multicolor labeling technology to single-out simultaneously many individual oligodendrocytes in the postnatal mouse optic nerve. This method is based on Brainbow, a transgenic system for stochastic expression of multiple fluorescent protein genes through Cre-lox recombination, previously used for visualizing axons and neurons. We used tamoxifen-inducible recombination in myelinating cells of Brainbow transgenic mice to obtain multicolor labeling of oligodendrocytes. We show that the palette of colors expressed by labeled oligodendrocytes is tamoxifen dependent, with the highest doses producing the densest and most colorful labeling. At low doses of tamoxifen, the morphology of single or small clusters of fluorescent oligodendrocytes can be studied during postnatal development and in adult. Internodes are labeled to their extremities, revealing nodes of Ranvier. The new mouse model presented here opens new possibilities to explore the organization and development of the oligodendrocyte network with single-cell resolution.


Assuntos
Proteínas Luminescentes/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/citologia , Nervo Óptico/citologia , Coloração e Rotulagem/métodos , Animais , Imunofluorescência/métodos , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Recombinação Genética , Processos Estocásticos , Tamoxifeno/administração & dosagem , Transgenes
9.
Brain Behav Immun ; 38: 38-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24263070

RESUMO

Functional interactions between the chemokine receptor CXCR4 and opioid receptors have been reported in the brain, leading to a decreased morphine analgesic activity. However the cellular mechanisms responsible for this loss of opioid analgesia are largely unknown. Here we examined whether Src family-kinases (SFK)-linked mechanisms induced by CXCR4 contributed to the loss of acute morphine analgesia and could represent a new physiological anti-opioid signaling pathway. In this way, we showed by immunohistochemistry and western blot that CXCL12 rapidly activated SFK phosphorylation in vitro in primary cultured lumbar rat dorsal root ganglia (DRG) but also in vivo in the DRG and the spinal cord. We showed that SFK activation occurred in a sub population of sensory neurons, in spinal microglia but also in spinal nerve terminals expressing mu-(MOR) and delta-opioid (DOR) receptor. In addition we described that CXCR4 is detected in MOR- and DOR-immunoreactive neurons in the DRG and spinal cord. In vivo, we demonstrated that an intrathecal administration of CXCL12 (1µg) significantly attenuated the subcutaneous morphine (4mg/kg) analgesia. Conversely, pretreatment with a potent CXCR4 antagonist (5µg) significantly enhanced morphine analgesia. Similar effects were obtained after an intrathecal injection of a specific SFK inhibitor, PP2 (10µg). Furthermore, PP2 abrogated CXCL12-induced decrease in morphine analgesia by suppressing SFK activation in the spinal cord. In conclusion, our data highlight that CXCL12-induced loss of acute morphine analgesia is linked to Src family kinases activation.


Assuntos
Analgésicos Opioides/farmacologia , Quimiocina CXCL12/farmacologia , Gânglios Espinais/enzimologia , Morfina/farmacologia , Receptores CXCR4/metabolismo , Quinases da Família src/metabolismo , Animais , Tolerância a Medicamentos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Microglia/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley
10.
Prog Retin Eye Res ; 93: 101155, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669906

RESUMO

Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Animais , Camundongos , Humanos , Cegueira Noturna/genética , Estudo de Associação Genômica Ampla , Eletrorretinografia/métodos , Mutação , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Proteínas de Membrana/genética
11.
Glia ; 60(10): 1590-604, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22777942

RESUMO

Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain. In adult mice, Sema6A expression is upregulated in demyelinating lesions in cuprizone-treated mice. The analysis of the optic nerve and anterior commissure of Sema6A-deficient mice revealed a marked delay of oligodendrocyte differentiation. Accordingly, the development of the nodes of Ranvier is also transiently delayed. We also observed an arrest in the in vitro differentiation of purified oligodendrocytes lacking Sema6A, with a reduction of the expression level of Myelin Basic Protein. Their morphology is also abnormal, with less complex and ramified processes than wild-type oligodendrocytes. In myelinating co-cultures of dorsal root ganglion neurons and purified oligodendrocytes we found that myelination is perturbed in absence of Sema6A. These results suggest that Sema6A might have a role in myelination by controlling oligodendrocyte differentiation.


Assuntos
Diferenciação Celular/fisiologia , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Semaforinas/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/citologia , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Mutação/fisiologia , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/efeitos dos fármacos , Gravidez , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Superfície Celular/deficiência , Semaforinas/deficiência , Células-Tronco/fisiologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
12.
Amino Acids ; 43(5): 1979-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22476345

RESUMO

In 1970s, taurine deficiency was reported to induce photoreceptor degeneration in cats and rats. Recently, we found that taurine deficiency contributes to the retinal toxicity of vigabatrin, an antiepileptic drug. However, in this toxicity, retinal ganglion cells were degenerating in parallel to cone photoreceptors. The aim of this study was to re-assess a classic mouse model of taurine deficiency following a treatment with guanidoethane sulfonate (GES), a taurine transporter inhibitor to determine whether retinal ganglion cells are also affected. GES treatment induced a significant reduction in the taurine plasma levels and a lower weight increase. At the functional level, photopic electroretinograms were reduced indicating a dysfunction in the cone pathway. A change in the autofluorescence appearance of the eye fundus was explained on histological sections by an increased autofluorescence of the retinal pigment epithelium. Although the general morphology of the retina was not affected, cell damages were indicated by the general increase in glial fibrillary acidic protein expression. When cell quantification was achieved on retinal sections, the number of outer/inner segments of cone photoreceptors was reduced (20 %) as the number of retinal ganglion cells (19 %). An abnormal synaptic plasticity of rod bipolar cell dendrites was also observed in GES-treated mice. These results indicate that taurine deficiency can not only lead to photoreceptor degeneration but also to retinal ganglion cell loss. Cone photoreceptors and retinal ganglion cells appear as the most sensitive cells to taurine deficiency. These results may explain the recent therapeutic interest of taurine in retinal degenerative pathologies.


Assuntos
Proteínas do Olho/genética , Proteína Glial Fibrilar Ácida/genética , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Epitélio Pigmentado da Retina/patologia , Taurina/deficiência , Animais , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Guanidinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasticidade Neuronal/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Taurina/antagonistas & inibidores
13.
Commun Biol ; 5(1): 89, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075261

RESUMO

Human cone phototropism is a key mechanism underlying the Stiles-Crawford effect, a psychophysiological phenomenon according to which photoreceptor outer/inner segments are aligned along with the direction of incoming light. However, such photomechanical movements of photoreceptors remain elusive in mammals. We first show here that primate cone photoreceptors have a planar polarity organized radially around the optical center of the eye. This planar polarity, based on the structure of the cilium and calyceal processes, is highly reminiscent of the planar polarity of the hair cells and their kinocilium and stereocilia. Secondly, we observe under super-high resolution expansion microscopy the cytoskeleton and Usher proteins architecture in the photoreceptors, which appears to establish a mechanical continuity between the outer and inner segments. Taken together, these results suggest a comprehensive cellular mechanism consistent with an active phototropism of cones toward the optical center of the eye, and thus with the Stiles-Crawford effect.


Assuntos
Polaridade Celular/fisiologia , Luz , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Animais , Fenômenos Biomecânicos , Citoesqueleto , Macaca fascicularis , Reprodutibilidade dos Testes , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
14.
Commun Biol ; 5(1): 1135, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302949

RESUMO

The ocular vasculature is critically involved in many blinding diseases and is also a popular research model for the exploration of developmental and pathological angiogenesis. The development of ocular vessels is a complex, finely orchestrated sequence of events, involving spatial and temporal coordination of hyaloid, choroidal and retinal networks. Comprehensive studies of the tridimensional dynamics of microvascular remodeling are limited by the fact that preserving the spatial disposition of ocular vascular networks is cumbersome using classical histological procedures. Here, we demonstrate that light-sheet fluorescence microscopy (LFSM) of cleared mouse eyes followed by extensive virtual dissection offers a solution to this problem. To the best of our knowledge, this is the first 3D quantification of the evolution of the hyaloid vasculature and of post-occlusive venous remodeling together with the characterization of spatial distribution of various cell populations in ocular compartments, including the vitreous. These techniques will prove interesting to obtain other insights in scientific questions addressing organ-wide cell interactions.


Assuntos
Corioide , Vasos Retinianos , Camundongos , Animais , Retina , Neovascularização Patológica , Microscopia de Fluorescência
15.
NPJ Regen Med ; 7(1): 39, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974011

RESUMO

Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.

16.
Mol Cell Neurosci ; 43(4): 414-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20132888

RESUMO

The anti-epileptic drug vigabatrin induces an irreversible constriction of the visual field, but is still widely used to treat infantile spasms and some forms of epilepsy. We recently reported that vigabatrin-induced cone damage is due to a taurine deficiency. However, optic atrophy and thus retinal ganglion cell degeneration was also reported in children treated for infantile spasms. We here show in neonatal rats treated from postnatal days 4 to 29 that the vigabatrin treatment triggers not only cone photoreceptor damage, disorganisation of the photoreceptor layer and gliosis but also retinal ganglion cell loss. Furthermore, we demonstrate in these neonatal rats that taurine supplementation partially prevents these retinal lesions and in particular the retinal ganglion cell loss. These results provide the first evidence of retinal ganglion cell neuroprotection by taurine. They further confirm that taurine supplementation should be administered with the vigabatrin treatment for infantile spasms or epilepsy.


Assuntos
Morte Celular/efeitos dos fármacos , Atrofia Óptica/induzido quimicamente , Células Fotorreceptoras/patologia , Células Ganglionares da Retina/patologia , Taurina/deficiência , Vigabatrina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Anticonvulsivantes/farmacologia , Contagem de Células , Eletrorretinografia , Imunofluorescência , Fármacos Neuroprotetores/administração & dosagem , Atrofia Óptica/patologia , Células Fotorreceptoras/efeitos dos fármacos , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Taurina/administração & dosagem
17.
Elife ; 102021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100719

RESUMO

Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific Plxnb2 conditional knockout mice. We show that proliferating CGNs in Plxnb2 mutants not only escape the oEGL and mix with newborn postmitotic CGNs. Furthermore, motility of mitotic precursors and early postmitotic CGNs is altered. Together, this leads to the formation of ectopic patches of CGNs at the cerebellar surface and an intermingling of normally time-stamped parallel fibers in the molecular layer (ML), and aberrant arborization of Purkinje cell dendrites. There results suggest that Plexin-B2 restricts CGN motility and might have a function in cytokinesis.


Assuntos
Diferenciação Celular/genética , Cerebelo/citologia , Proteínas do Tecido Nervoso , Neurônios , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia
18.
Cell Death Dis ; 11(8): 711, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32862199

RESUMO

Lighting is rapidly changing with the introduction of light-emitting diodes (LEDs) in our homes, workplaces, and cities. This evolution of our optical landscape raises major concerns regarding phototoxicity to the retina since light exposure is an identified risk factor for the development of age-related macular degeneration (AMD). In this disease, cone photoreceptors degenerate while the retinal pigment epithelium (RPE) is accumulating lipofuscin containing phototoxic compounds such as A2E. Therefore, it remains unclear if the light-elicited degenerative process is initiated in cones or in the RPE. Using purified cone photoreceptors from pig retina, we here investigated the effect of light on cone survival from 390 to 510 nm in 10 nm steps, plus the 630 nm band. If at a given intensity (0.2 mW/cm²), the most toxic wavelengths are comprised in the visible-to-near-UV range, they shift to blue-violet light (425-445 nm) when exposing cells to a solar source filtered by the eye optics. In contrast to previous rodent studies, this cone photoreceptor phototoxicity is not related to light absorption by the visual pigment. Despite bright flavin autofluorescence of cone inner segment, excitation-emission matrix of this inner segment suggested that cone phototoxicity was instead caused by porphyrin. Toxic light intensities were lower than those previously defined for A2E-loaded RPE cells indicating cones are the first cells at risk for a direct light insult. These results are essential to normative regulations of new lighting but also for the prevention of human retinal pathologies since toxic solar light intensities are encountered even at high latitudes.


Assuntos
Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Humanos , Luz/efeitos adversos , Lipofuscina/toxicidade , Macaca fascicularis , Degeneração Macular/patologia , Porfirinas/metabolismo , Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Pigmentos da Retina/metabolismo , Retinoides/toxicidade , Suínos
19.
Stem Cells Int ; 2019: 7858796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396286

RESUMO

The reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) has broad applications in regenerative medicine. The generation of self-organized retinal structures from these iPSCs offers the opportunity to study retinal development and model-specific retinal disease with patient-specific iPSCs and provides the basis for cell replacement strategies. In this study, we demonstrated that the major type of glial cells of the human retina, Müller cells, can be reprogrammed into iPSCs that acquire classical signature of pluripotent stem cells. These Müller glial cell-derived iPSCs were able to differentiate toward retinal fate and generate concomitantly retinal pigmented epithelial cells and self-forming retinal organoid structures containing retinal progenitor cells. Retinal organoids recapitulated retinal neurogenesis with differentiation of retinal progenitor cells into all retinal cell types in a sequential overlapping order. With a modified retinal maturation protocol characterized by the presence of serum and high glucose levels, our study revealed that the retinal organoids contained pseudolaminated neural retina with important features reminiscent of mature photoreceptors, both rod and cone subtypes. This advanced maturation of photoreceptors not only supports the possibility to use 3D retinal organoids for studying photoreceptor development but also offers a novel opportunity for disease modeling, particularly for inherited retinal diseases.

20.
Front Neurosci ; 12: 789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450028

RESUMO

Optogenetic technologies paved the way to dissect complex neural circuits and monitor neural activity using light in animals. In retinal disease, optogenetics has been used as a therapeutic modality to reanimate the retina after the loss of photoreceptor outer segments. However, it is not clear today which ones of the great diversity of microbial opsins are best suited for therapeutic applications in human retinas as cell lines, primary cell cultures and animal models do not predict expression patterns of microbial opsins in human retinal cells. Therefore, we sought to generate retinal organoids derived from human induced pluripotent stem cells (hiPSCs) as a screening tool to explore the membrane trafficking efficacy of some recently described microbial opsins. We tested both depolarizing and hyperpolarizing microbial opsins including CatCh, ChrimsonR, ReaChR, eNpHR 3.0, and Jaws. The membrane localization of eNpHR 3.0, ReaChR, and Jaws was the highest, likely due to their additional endoplasmic reticulum (ER) release and membrane trafficking signals. In the case of opsins that were not engineered to improve trafficking efficiency in mammalian cells such as CatCh and ChrimsonR, membrane localization was less efficient. Protein accumulation in organelles such as ER and Golgi was observed at high doses with CatCh and ER retention lead to an unfolded protein response. Also, cytoplasmic localization was observed at high doses of ChrimsonR. Our results collectively suggest that retinal organoids derived from hiPSCs can be used to predict the subcellular fate of optogenetic proteins in a human retinal context. Such organoids are also versatile tools to validate other gene therapy products and drug molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA