Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chirality ; 36(6): e23695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890151

RESUMO

Chirality plays a fundamental role in natural phenomena, yet its manifestation on solid surfaces remains relatively unexplored. In this study, we investigate the formation of chiroptical melanin-based self-assembled films on quartz substrates, leveraging mussel-inspired surface chemistry. Water-soluble porphyrins serve as molecular synthons, facilitating the spontaneous formation of hetero-aggregates in phosphate-buffered saline containing L- or D-DOPA. Spectroscopic analysis reveals chiral transfer from DOPA enantiomers to porphyrin hetero-aggregates, followed by the disruption of these latter and subsequent generation of chiral melanin structures in solution. Quartz substrates inserted into these solutions spontaneously accumulate homogeneous melanin-like films over days, demonstrating the feasibility of self-assembly. The resulting films exhibit characteristic UV/Vis and CD spectra, with distinct signals indicating successful chiral induction. Interestingly, the AFM characterizations reveal a distinct surface morphology, and in addition, some thermal and mechanical properties have been taken into account. Overall, this study sheds light on the formation, stability, and chiroptical properties of melanin-based films, paving the way for their application in various fields.

2.
Chemistry ; 26(16): 3515-3518, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31990096

RESUMO

The hierarchical assembly, in aqueous solution, of a new multi-metalloporphyrin/calixarene aggregate has been accomplished. In this supramolecular system transfer of chirality, from the outermost components to the central porphyrin reporter, takes place as a result of favorable and fully noncovalent long-range electronic communication.

3.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471075

RESUMO

Antibiotics represent essential drugs to contrast the insurgence of bacterial infections in humans and animals. Their extensive use in livestock farming, including aquaculture, has improved production performances and food safety. However, their overuse can implicate a risk of water pollution and related antimicrobial resistance. Consequently, innovative strategies for successfully removing antibiotic contaminants have to be advanced to protect human health. Among them, photodegradation TiO2-driven under solar irradiation appears not only as a promising method, but also a sustainable pathway. Hence, we evaluated several composite TiO2 powders with H2TCPP, CuTCPP, ZnTCPP, and SnT4 porphyrin for this scope in order to explore the effect of porphyrins sensitization on titanium dioxide. The synthesis was realized through a fully non-covalent functionalization in water at room conditions. The efficacy of obtained composite materials was also tested in photodegrading oxolinic acid and oxytetracycline in aqueous solution at micromolar concentrations. Under simulated solar irradiation, TiO2 functionalized with CuTCPP has shown encouraging results in the removal of oxytetracycline from water, by opening the way as new approaches to struggle against antibiotic's pollution and, finally, to represent a new valuable tool of public health.


Assuntos
Antibacterianos/química , Farmacorresistência Bacteriana , Fotólise , Porfirinas/química , Gestão de Riscos , Titânio/química , Água/química , Adsorção , Ácido Oxolínico/química , Oxitetraciclina/química , Espectrofotometria Ultravioleta
4.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272751

RESUMO

Zinc oxide (ZnO) nanorods grown by chemical bath deposition (CBD) on the surface of polyetheresulfone (PES) electrospun fibers confer antimicrobial properties to the obtained hybrid inorganic-polymeric PES/ZnO mats. In particular, a decrement of bacteria colony forming units (CFU) is observed for both negative (Escherichia coli) and positive (Staphylococcus aureus and Staphylococcus epidermidis) Grams. Since antimicrobial action is strictly related to the quantity of ZnO present on surface, a CBD process optimization is performed to achieve the best results in terms of coverage uniformity and reproducibility. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) provide morphological and compositional analysis of PES/ZnO mats while thermogravimetric analysis (TGA) is useful to assess the best process conditions to guarantee the higher amount of ZnO with respect to PES scaffold. Biocidal action is associated to Zn2+ ion leaching in solution, easily indicated by UV-Vis measurement of metallation of free porphyrin layers deposited on glass.


Assuntos
Antibacterianos/química , Nanotubos/química , Polímeros/química , Sulfonas/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Microscopia Eletrônica de Varredura/métodos , Nanofibras/química , Reprodutibilidade dos Testes , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
5.
Molecules ; 24(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540076

RESUMO

The dispersion of para-nitroaniline (p-NA) in water poses a threat to the environment and human health. Therefore, the development of functional adsorbents to remove this harmful compound is crucial to the implementation of wastewater purification strategies, and electrospun mats represent a versatile and cost-effective class of materials that are useful for this application. In the present study, we tested the ability of some polyethersulfone (PES) nanofibers containing adsorbed porphyrin molecules to remove p-NA from water. The functional mats in this study were obtained by two different approaches based on fiber impregnation or doping. In particular, meso-tetraphenyl porphyrin (H2TPP) or zinc(II) meso-tetraphenyl porphyrin (ZnTPP) were immobilized on the surface of PES fiber mats by dip-coating or added to the PES electrospun solution to obtain porphyrin-doped PES mats. The presence of porphyrins on the fiber surfaces was confirmed by UV-Vis spectroscopy, fluorescence measurements, and XPS analysis. p-NA removal from water solutions was spectrophotometrically detected and evaluated.


Assuntos
Compostos de Anilina/química , Nanofibras/química , Polímeros/química , Sulfonas/química , Águas Residuárias/química , Purificação da Água , Porfirinas/química
6.
Molecules ; 24(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591641

RESUMO

We report of the interactions between four amino acids lysine (Lys), arginine (Arg), histidine (His), and phenylalanine (Phe) with the J-aggregates of the protonated 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin H4TPPS. Several aspects of these self-assembled systems have been analyzed: (i) the chiral transfer process; (ii) the hierarchical effects leading to the aggregates formation; and, (iii) the influence of the amino acid concentrations on both transferring and storing chiral information. We have demonstrated that the efficient control on the J-aggregates chirality is obtained when all amino acids are tested and that the chirality transfer process is under hierarchical control. Finally, the chiral porphyrin aggregates obtained exhibit strong chiral inertia.


Assuntos
Aminoácidos/química , Porfirinas/química , Dicroísmo Circular , Ponto Isoelétrico , Espectrofotometria Ultravioleta , Estereoisomerismo
7.
J Am Chem Soc ; 135(23): 8632-8, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23692291

RESUMO

In this manuscript a multitechnique approach is proposed to characterize the interaction between new tri-N-methylpyridyl corrole (TMPC) and its germanium(IV) derivative (GeTMPC), with single- and double-stranded nucleic acid homopolymers and calf thymus DNA. The specificity of each spectroscopic technique has been exploited to analyze the different aspects of corrole binding. Noteworthy, this approach allows us to distinguish between H aggregation of TMPC in the presence of polyriboadenilic acid (poly(rA)) and J aggregates in the presence of polyribocytidinic acid (poly(rC)) as well as to identify the formation of GeTMPC dimers in the presence of single-stranded poly(rA) and pseudointercalation with single-stranded poly(rC).


Assuntos
DNA/química , Germânio/química , Compostos Organometálicos/química , Polirribonucleotídeos/química , Porfirinas/química , Cátions/química , Estrutura Molecular
8.
ACS Omega ; 8(17): 15586-15593, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151557

RESUMO

Fluorinated photodefinable polymers are widely employed as re-distribution layers in wafer-level packaging to produce microelectronic devices because of their suitable low dielectric constant and moisture absorption, high mechanical toughness, thermal conductivity and stability, and chemical inertness. Typically, fluorinated photodefinable polybenzoxazoles (F-PBOs) are the most used in this field. In the present work, we investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy the morphological and chemical modifications induced by Ar plasma treatments on F-PBO films. This process, used to remove surface contaminant species, as well as increase the polymeric surface roughness, to improve the adhesion to the other components during electronic packaging, is a crucial step during the manufacturing of some microelectronic devices. We found that argon plasma treatments determine the wanted drastic increase of the polymer surface roughness but, in the presence of a patterned silver layer on F-PBO, needed for the fabrication of electric contacts in microelectronic devices, also induce some unwanted formation of silver fluoride species.

9.
Polymers (Basel) ; 14(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631994

RESUMO

Tailored ZnO surface functionalization was performed inside a polydimethyl-siloxane (PDMS) microchannel of a micro-optofluidic device (mofd) to modulate its surface hydrophobicity to develop a method for fine tuning the fluid dynamics inside a microchannel. The wetting behavior of the surface is of particular importance if two different phases are used for system operations. Therefore, the fluid dynamic behavior of two immiscible fluids, (i) air-water and (ii) air-glycerol/water in PDMS mofds and ZnO-PDMS mofds was investigated by using different experimental conditions. The results showed that air-glycerol/water fluid was always faster than air-water flow, despite the microchannel treatment: however, in the presence of ZnO microstructures, the velocity of the air-glycerol/water fluid decreased compared with that observed for the air-water fluid. This behavior was associated with the strong ability of glycerol to create an H-bond network with the exposed surface of the zinc oxide microparticles. The results presented in this paper allow an understanding of the role of ZnO functionalization, which allows control of the microfluidic two-phase flow using different liquids that undergo different chemical interactions with the surface chemical terminations of the microchannel. This chemical approach is proposed as a control strategy that is easily adaptable for any embedded micro-device.

10.
J Nanosci Nanotechnol ; 11(9): 8180-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097551

RESUMO

Large-area, highly ordered ZnO micropores-arrays consisting of ZnO nanotubes delimited by ZnO nanorods have been successfully fabricated and tested for protein sensing applications. ZnO seed layers have been deposited by Metal Organic Chemical Vapour Deposition and readily patterned by Colloidal Lithography to attain ZnO nanorods growth at selective sites by Chemical Bath Deposition. The used synthetic approach has been proven effective for the easy assembly of ZnO nanoplatforms into high-density arrays. Both patterned and unpatterned ZnO nanorods have been morphologically and compositionally characterised and, thus, tested for model studies of protein mobility at the interface. The patterned layers, having a higher contribution of surface polar moieties than the corresponding unpatterned surfaces, exhibit a reduced lateral diffusion of the adsorbed protein. This evidence is related to the intrinsic porous nature of the ZnO hemispherical arrays characterised by a nanotube-nanorod hybrid networks. The present study gives a great impetus to the fabrication of tunable ZnO nanoplatforms having multiple morphologies and exceptionally high surface areas suitable for application in sensing devices.

11.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372121

RESUMO

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.

12.
ACS Omega ; 6(31): 20667-20675, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396012

RESUMO

Silicon carbide power semiconductors overcome some limitations of silicon chips, and therefore, SiC is an attractive candidate for next-generation power electronics. In addition, the number of possible vertical devices that can be obtained on a given surface using the trench technique is significantly larger than that attainable using a planar setup. Moreover, a SiC trench power metal oxide semiconductor field-effect transistor (power MOSFET) structure removes the junction field-effect transistor (JFET) region (that would decrease the current flow width) and improves the channel density, thus reducing the specific electrical resistance. Consequently, in the present study, we report on the chemical bonding state of elements and structural characterization of trenches, obtained using SF6-based plasma etching, on the 4H-SiC polytype substrate. An interferometric algorithm that finds the endpoint to stop etching governed the trench depth. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy analyses stated the high quality and uniformity of the trenches. These materials are particularly promising for the fabrication of the SiC MOSFET to be implemented in the manufacturing of power devices.

13.
J Am Chem Soc ; 132(13): 4966-70, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20225872

RESUMO

The second-order nonlinear optical (NLO) properties of [Ln(hfac)(3)(diglyme)] (hfac = hexafluoroacetylacetonate; diglyme = bis(2-methoxyethyl)ether; Ln = La, Ce, Pr, Sm, Eu, Gd, Er, Lu) complexes have been investigated by a combination of electric-field second harmonic generation (EFISH) and harmonic light scattering (HLS) techniques, providing evidence for the relevant role of f electrons in tuning the second-order NLO response dominated by the octupolar contribution. These lanthanide NLO chromophores allow a clean valuation of the influence of f electrons on the quadratic hyperpolarizability and on its dipolar and octupolar contributions. Molecular quadratic hyperpolarizability values measured by the EFISH method, beta(EFISH), initially increase rapidly with the number of f electrons, the value for the Gd complex being 11 times that of the La complex, whereas this increase is much lower for the last seven f electrons, the beta(EFISH) value of the Lu complex being only 1.2 times that of the Gd complex. The increase of beta(HLS), which is dominated by an octupolar contribution, is much lower along the Ln series. Remarkably, the good beta(HLS) values of these simple systems, well known for their luminescence properties, are reached at no cost of transparency.


Assuntos
Etilenoglicóis/química , Cetonas/química , Elementos da Série dos Lantanídeos/química , Éteres Metílicos/química , Compostos Organometálicos/química , Eletroquímica , Modelos Moleculares , Óptica e Fotônica , Compostos Organometálicos/síntese química
14.
Chemistry ; 16(34): 10439-46, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20645345

RESUMO

The use of a water-soluble octacationic bis-calix[4]arene with divergent cavities (BC(4)) as a templating agent for the assembly of a tetraanionic porphyrin (CuTPPS) has allowed the noncovalent synthesis of 2D or 3D multiporphyrin assemblies. Self-assembly of CuTPPS and BC(4) molecules proceeded under hierarchical control in a stepwise fashion to yield discrete and isolable supramolecular nanostructures containing up to 33 molecular elements (i.e., the CuTPPS/BC(4) 17:16 assembly, obtained in less than three hours). The formation of these species could be conveniently monitored by means of UV/Vis spectroscopy by following the absorbance of the Soret band at 412 nm. In particular, the attainment of the pivotal CuTPPS/BC(4) 5:4 species with a cruciform structure, as the key fork-point intermediate for the subsequent formation of the higher 2D and 3D assemblies, has been demonstrated by light-scattering studies and by an unequivocal synthesis of mixed-porphyrin/calixarene 5:4 species involving the use of two different types of metallated porphyrins, namely CuTPPS and MnTPPS. The remarkable stability of these assemblies permits a stepwise synthesis that makes it possible to choose the desired porphyrin sequence.

15.
J Nanosci Nanotechnol ; 10(9): 5889-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21133122

RESUMO

The immobilization of albumin and lysozyme by spontaneous adsorption on ZnO films, deposited by metal-organic chemical vapour deposition (MOCVD), has been investigated. Quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy analyses show that, at physiological pH, the two proteins exhibit different adsorption behaviours, namely albumin irreversibly adsorbs up to coverage of a half of monolayer, while lysozyme does not. Indeed, the high isoelectric point (IEP) of ZnO favors immobilization of biomolecules with lower IEP, assisted by electrostatic attraction in the proper pH range. This selective protein adsorption behaviour results very promising for ZnO nanoplatforms, consisting of hexagonally patterned ZnO nanoring arrays and SiO2 areas, obtained by colloidal template-catalyst assisted MOCVD.


Assuntos
Nanoestruturas/química , Proteínas/química , Óxido de Zinco/química , Adsorção , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Muramidase , Nanoestruturas/ultraestrutura , Nanotecnologia , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Albumina Sérica
16.
J Nanosci Nanotechnol ; 10(8): 5183-90, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125868

RESUMO

Undoped and Europium-doped titania nanofibers have been fabricated by electrospinning technique, using a single multielement Titanium/Europium source. In this communication we present the synthesis, structural and spectroscopic characterisation of Eu-doped TiO2 nanofibers starting from polyvinylpyrrolidone, titanium tetraisopropoxide (Ti(OiPr)4) and Eu(hfa)3 x diglyme (Hhfa = 1,1,1,5,5,5-hexafluoroacetyacetone, diglyme = CH3O(CH2CH2O)2CH3). The chosen system allowed to investigate a wide compositional range, i.e., from 3 to 10% mol of Eu3+. Microstructure was studied by means of scanning electron microscopy (SEM), thermal behaviour followed by thermogravimetric and differential thermal analysis (TG-DTA). Phase analysis was performed by means of X-ray diffraction (XRD) and high temperature X-ray diffraction analysis (HT-XRD) up to 1100 degrees C. Luminescence properties were investigated by means of luminescence spectroscopy, using a laser excitation source at 395 nm. All electrospun materials consisted of randomly oriented nanofibers of fairly uniform diameter. The average fiber size was 80-100 nm and 40 nm for, respectively, Eu-doped and undoped TiO2 calcinated at 500 degrees C. The presence of Europium shifted toward higher values either the crystallization temperature of anatase and the anatase to rutile phase transition, the latter being accompanied by the formation of the Eu2Ti2O7 phase. The doped samples showed a strong luminescence of Eu3+ ions. The emission spectra were dominated by the 5D0 --> 7F2 emission, suggesting a notable distortion around the Eu3+ ions. The broadening of the bands pointed to the presence of a relevant inhomogeneous disorder around the Eu3+ sites. The Eu3+ doped TiO2 nanofibers showed a higher emission intensity with respect to the PVP/TiO2 ones.

17.
Chem Commun (Camb) ; (7): 839-41, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19322459

RESUMO

A hybrid approach of colloidal lithography and metalorganic chemical vapour deposition (MOCVD) has been used to fabricate ZnO nanowire bundles and nanoholes by using a silver metalorganic precursor as the growth catalyst.

18.
Sci Rep ; 9(1): 11540, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395932

RESUMO

Silicon has been widely used as a material for microelectronic for more than 60 years, attracting considerable scientific interest as a promising tool for the manufacture of implantable medical devices in the context of neurodegenerative diseases. However, the use of such material involves responsibilities due to its toxicity, and researchers are pushing towards the generation of new classes of composite semiconductors, including the Silicon Carbide (3C-SiC). In the present work, we tested the biocompatibility of Silicon and 3C-SiC using an in vitro model of human neuronal stem cells derived from dental pulp (DP-NSCs) and mouse Olfactory Ensheathing Cells (OECs), a particular glial cell type showing stem cell characteristics. Specifically, we investigated the effects of 3C-SiC on neural cell morphology, viability and mitochondrial membrane potential. Data showed that both DP-NSCs and OECs, cultured on 3C-SiC, did not undergo consistent oxidative stress events and did not exhibit morphological modifications or adverse reactions in mitochondrial membrane potential. Our findings highlight the possibility to use Neural Stem Cells plated on 3C-SiC substrate as clinical tool for lesioned neural areas, paving the way for future perspectives in novel cell therapies for neuro-degenerated patients.


Assuntos
Materiais Biocompatíveis/química , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Silício/química , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Compostos Inorgânicos de Carbono/química , Compostos Inorgânicos de Carbono/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Neuroglia/efeitos dos fármacos , Semicondutores , Silício/farmacologia , Silício/uso terapêutico , Compostos de Silício/química , Compostos de Silício/farmacologia , Propriedades de Superfície
19.
Chem Commun (Camb) ; 55(36): 5255-5258, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990489

RESUMO

A new protocol to obtain carbon nanoparticles (CNPs) covalently functionalized with a chiral Mn-Salen catalyst is described here. The new nanocatalyst (CNPs-Mn-Salen) was tested in the enantioselective epoxidation of some representative alkenes (CN-chromene, 1,2-dihydronaphthalene and cis-ß-ethyl styrene), obtaining better enantiomeric excess values than that of the catalyst single molecule, highlighting the role of the nanostructure in the enantioselectivity.

20.
Materials (Basel) ; 11(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522444

RESUMO

Electrospun veils from copolyethersulfones (coPES) were prepared as soluble interlaminar veils for carbon fiber/epoxy composites. Neat, resin samples were impregnated into coPES veils with unmodified resin, while dry carbon fabrics were covered with electrospun veils and then infused with the unmodified epoxy resin to prepare reinforced laminates. The thermoplastic content varied from 10 wt% to 20 wt%. TGAP epoxy monomer showed improved and fast dissolution for all the temperatures tested. The unreinforced samples were cured first at 180 °C for 2 h and then were post-cured at 220 °C for 3 h. These sample showed a high dependence on the curing cycle. Carbon reinforced samples showed significant differences compared to the neat resin samples in terms of both viscoelastic and morphological properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA