Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.862
Filtrar
Mais filtros

Coleção Fiocruz
Intervalo de ano de publicação
1.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776919

RESUMO

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Assuntos
Fungos , Microbioma Gastrointestinal , Micobioma , Animais , Humanos , Masculino , Camundongos , Fezes/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico/genética , Genômica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma , Filogenia , Feminino , Adulto , Pessoa de Meia-Idade
2.
Nat Immunol ; 21(6): 671-683, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424366

RESUMO

Urinary tract infections (UTIs) typically evoke prompt and vigorous innate bladder immune responses, including extensive exfoliation of the epithelium. To explain the basis for the extraordinarily high recurrence rates of UTIs, we examined adaptive immune responses in mouse bladders. We found that, following each bladder infection, a highly T helper type 2 (TH2)-skewed immune response directed at bladder re-epithelialization is observed, with limited capacity to clear infection. This response is initiated by a distinct subset of CD301b+OX40L+ dendritic cells, which migrate into the bladder epithelium after infection before trafficking to lymph nodes to preferentially activate TH2 cells. The bladder epithelial repair response is cumulative and aberrant as, after multiple infections, the epithelium was markedly thickened and bladder capacity was reduced relative to controls. Thus, recurrence of UTIs and associated bladder dysfunction are the outcome of the preferential focus of the adaptive immune response on epithelial repair at the expense of bacterial clearance.


Assuntos
Cistite/etiologia , Cistite/metabolismo , Ativação Linfocitária/imunologia , Mucosa/imunologia , Mucosa/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Carga Bacteriana , Biomarcadores , Linhagem Celular , Cistite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Mucosa/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia , Infecções Urinárias/etiologia , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia , Cicatrização/genética , Cicatrização/imunologia
3.
Nature ; 619(7971): 724-732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438522

RESUMO

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

4.
Cell ; 153(2): 376-88, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582327

RESUMO

In vertebrates, activation of innate immunity is an early response to injury, implicating it in the regenerative process. However, the mechanisms by which innate signals might regulate stem cell functionality are unknown. Here, we demonstrate that type 2 innate immunity is required for regeneration of skeletal muscle after injury. Muscle damage results in rapid recruitment of eosinophils, which secrete IL-4 to activate the regenerative actions of muscle resident fibro/adipocyte progenitors (FAPs). In FAPs, IL-4/IL-13 signaling serves as a key switch to control their fate and functions. Activation of IL-4/IL-13 signaling promotes proliferation of FAPs to support myogenesis while inhibiting their differentiation into adipocytes. Surprisingly, type 2 cytokine signaling is also required in FAPs, but not in myeloid cells, for rapid clearance of necrotic debris, a process that is necessary for timely and complete regeneration of tissues.


Assuntos
Imunidade Inata , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Transdução de Sinais , Animais , Proteínas Cardiotóxicas de Elapídeos , Eosinófilos/fisiologia , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Músculo Esquelético/fisiologia , Células Mieloides/metabolismo , Receptores de Superfície Celular/metabolismo , Regeneração , Fator de Transcrição STAT6/metabolismo
5.
PLoS Pathog ; 20(1): e1011729, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206983

RESUMO

Both constitutive and inducible immune mechanisms are employed by hosts for defense against infection. Constitutive immunity allows for a faster response, but it comes with an associated cost that is always present. This trade-off between speed and fitness costs leads to the theoretical prediction that constitutive immunity will be favored where parasite exposure is frequent. We selected populations of Drosophila melanogaster under high parasite pressure from the parasitoid wasp Leptopilina boulardi. With RNA sequencing, we found the evolution of resistance in these populations was associated with them developing constitutively active humoral immunity, mediated by the larval fat body. Furthermore, these evolved populations were also able to induce gene expression in response to infection to a greater level, which indicates an overall more activated humoral immune response to parasitization. The anti-parasitoid immune response also relies on the JAK/STAT signaling pathway being activated in muscles following infection, and this induced response was only seen in populations that had evolved under high parasite pressure. We found that the cytokine Upd3, which induces this JAK/STAT response, is being expressed by immature lamellocytes. Furthermore, these immune cells became constitutively present when populations evolved resistance, potentially explaining why they gained the ability to activate JAK/STAT signaling. Thus, under intense parasitism, populations evolved resistance by increasing both constitutive and induced immune defenses, and there is likely an interplay between these two forms of immunity.


Assuntos
Parasitos , Vespas , Animais , Drosophila/genética , Drosophila melanogaster , Interações Hospedeiro-Parasita/genética , Vespas/genética
6.
Nature ; 583(7816): 447-452, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499651

RESUMO

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Assuntos
Cromossomos Humanos Par 11/genética , Colite/genética , Colite/imunologia , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Linfócitos T Reguladores/imunologia , Acetilação , Alelos , Animais , Cromossomos de Mamíferos/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Sintenia/genética
7.
Proc Natl Acad Sci U S A ; 120(33): e2211019120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552757

RESUMO

Polymorphisms in immunity genes can have large effects on susceptibility to infection. To understand the origins of this variation, we have investigated the genetic basis of resistance to the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster. We found that increased expression of the gene lectin-24A after infection by parasitic wasps was associated with a faster cellular immune response and greatly increased rates of killing the parasite. lectin-24A encodes a protein that is strongly up-regulated in the fat body after infection and localizes to the surface of the parasite egg. In certain susceptible lines, a deletion upstream of the lectin-24A has largely abolished expression. Other mutations predicted to abolish the function of this gene have arisen recurrently in this gene, with multiple loss-of-expression alleles and premature stop codons segregating in natural populations. The frequency of these alleles varies greatly geographically, and in some southern African populations, natural selection has driven them near to fixation. We conclude that natural selection has favored the repeated loss of an important component of the immune system, suggesting that in some populations, a pleiotropic cost to lectin-24A expression outweighs the benefits of resistance.


Assuntos
Parasitos , Vespas , Animais , Drosophila/genética , Drosophila melanogaster/genética , Interações Hospedeiro-Parasita , Vespas/fisiologia , Lectinas/genética , Seleção Genética
8.
PLoS Pathog ; 19(1): e1011117, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719928

RESUMO

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Arábia Saudita , Austrália , Ambientes Extremos
9.
PLoS Genet ; 18(11): e1010453, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342922

RESUMO

When an animal is infected, the expression of a large suite of genes is changed, resulting in an immune response that can defend the host. Despite much evidence that the sequence of proteins in the immune system can evolve rapidly, the evolution of gene expression is comparatively poorly understood. We therefore investigated the transcriptional response to parasitoid wasp infection in Drosophila simulans and D. sechellia. Although these species are closely related, there has been a large scale divergence in the expression of immune-responsive genes in their two main immune tissues, the fat body and hemocytes. Many genes, including those encoding molecules that directly kill pathogens, have cis regulatory changes, frequently resulting in large differences in their expression in the two species. However, these changes in cis regulation overwhelmingly affected gene expression in immune-challenged and uninfected animals alike. Divergence in the response to infection was controlled in trans. We argue that altering trans-regulatory factors, such as signalling pathways or immune modulators, may allow natural selection to alter the expression of large numbers of immune-responsive genes in a coordinated fashion.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Evolução Molecular , Especificidade da Espécie , Proteínas de Drosophila/genética , Imunidade
10.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012977

RESUMO

Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses.


Assuntos
Basidiomycota/genética , Inativação Gênica , MicroRNAs/metabolismo , Micorrizas/genética , Simbiose/genética , Sequência de Bases , Basidiomycota/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , MicroRNAs/genética , Raízes de Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(29): e2122026119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858337

RESUMO

Hosts are continually selected to evolve new defenses against an ever-changing array of pathogens. To understand this process, we examined the genetic basis of resistance to the Drosophila A virus in Drosophila melanogaster. In a natural population, we identified a polymorphic transposable element (TE) insertion that was associated with an ∼19,000-fold reduction in viral titers, allowing flies to largely escape the harmful effects of infection by this virulent pathogen. The insertion occurs in the protein-coding sequence of the gene Veneno, which encodes a Tudor domain protein. By mutating Veneno with CRISPR-Cas9 in flies and expressing it in cultured cells, we show that the ancestral allele of the gene has no effect on viral replication. Instead, the TE insertion is a gain-of-function mutation that creates a gene encoding a novel resistance factor. Viral titers remained reduced when we deleted the TE sequence from the transcript, indicating that resistance results from the TE truncating the Veneno protein. This is a novel mechanism of virus resistance and a new way by which TEs can contribute to adaptation.


Assuntos
Elementos de DNA Transponíveis , Dicistroviridae , Drosophila melanogaster , Interações Hospedeiro-Patógeno , Domínio Tudor , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Mutação com Ganho de Função , Interações Hospedeiro-Patógeno/genética , Deleção de Sequência
12.
Proc Natl Acad Sci U S A ; 119(20): e2201113119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533275

RESUMO

The deadly toxin α-amanitin is a bicyclic octapeptide biosynthesized on ribosomes. A phylogenetically disjunct group of mushrooms in Agaricales (Amanita, Lepiota, and Galerina) synthesizes α-amanitin. This distribution of the toxin biosynthetic pathway is possibly related to the horizontal transfer of metabolic gene clusters among taxonomically unrelated mushrooms with overlapping habitats. Here, our work confirms that two biosynthetic genes, P450-29 and FMO1, are oxygenases important for amanitin biosynthesis. Phylogenetic and genetic analyses of these genes strongly support their origin through horizontal transfer, as is the case for the previously characterized biosynthetic genes MSDIN and POPB. Our analysis of multiple genomes showed that the evolution of the α-amanitin biosynthetic pathways in the poisonous agarics in the Amanita, Lepiota, and Galerina clades entailed distinct evolutionary pathways including gene family expansion, biosynthetic genes, and genomic rearrangements. Unrelated poisonous fungi produce the same deadly amanitin toxins using variations of the same pathway. Furthermore, the evolution of the amanitin biosynthetic pathway(s) in Amanita species generates a much wider range of toxic cyclic peptides. The results reported here expand our understanding of the genetics, diversity, and evolution of the toxin biosynthetic pathway in fungi.


Assuntos
Amanitinas , Toxinas Biológicas , Amanita/genética , Amanitinas/genética , Evolução Biológica , Vias Biossintéticas/genética , Transferência Genética Horizontal
13.
Proc Natl Acad Sci U S A ; 119(35): e2122734119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994668

RESUMO

Biological invasions are a major cause of environmental and economic disruption. While ecological factors are key determinants of their success, the role of genetics has been more challenging to demonstrate. The colonization of Australia by the European rabbit is one of the most iconic and devastating biological invasions in recorded history. Here, we show that despite numerous introductions over a 70-y period, this invasion was triggered by a single release of a few animals that spread thousands of kilometers across the continent. We found genetic support for historical accounts that these were English rabbits imported in 1859 by a settler named Thomas Austin and traced the origin of the invasive population back to his birthplace in England. We also find evidence of additional introductions that established local populations but have not spread geographically. Combining genomic and historical data we show that, contrary to the earlier introductions, which consisted mostly of domestic animals, the invasive rabbits had wild ancestry. In New Zealand and Tasmania, rabbits also became a pest several decades after being introduced. We argue that the common denominator of these invasions was the arrival of a new genotype that was better adapted to the natural environment. These findings demonstrate how the genetic composition of invasive individuals can determine the success of an introduction and provide a mechanism by which multiple introductions can be required for a biological invasion.


Assuntos
Animais Selvagens , Genética Populacional , Espécies Introduzidas , Coelhos , Animais , Animais Domésticos , Animais Selvagens/genética , Animais Selvagens/fisiologia , Austrália , Variação Genética , Genômica , Genótipo , História do Século XIX , História do Século XX , História do Século XXI , Espécies Introduzidas/estatística & dados numéricos , Nova Zelândia , Coelhos/genética , Coelhos/fisiologia , Tasmânia , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 119(15): e2118879119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377798

RESUMO

Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)­specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass' ecological niche and thus putatively represents a valuable breeding resource.


Assuntos
Aclimatação , Panicum , Poliploidia , Aclimatação/genética , Variação Genética , Panicum/genética , Panicum/fisiologia , Tetraploidia
15.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644510

RESUMO

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Imunidade Inata , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita/imunologia , Hemócitos/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Larva/imunologia , Larva/parasitologia , Drosophila/parasitologia , Drosophila/imunologia
16.
Mod Pathol ; 37(3): 100420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185249

RESUMO

9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Biomarcadores Tumorais/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/genética , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Deleção de Sequência , Ubiquitina Tiolesterase/genética
17.
New Phytol ; 242(4): 1486-1506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297461

RESUMO

Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.


Assuntos
Agricultura , Ecologia , Genômica , Micorrizas , Simbiose , Micorrizas/fisiologia , Micorrizas/genética , Simbiose/genética , Pesquisa , Plantas/microbiologia
18.
New Phytol ; 243(1): 381-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741469

RESUMO

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Assuntos
Proteínas Fúngicas , Laccaria , Micorrizas , NADPH Oxidases , Espécies Reativas de Oxigênio , Simbiose , Laccaria/fisiologia , Laccaria/genética , Laccaria/metabolismo , Micorrizas/fisiologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Fosforilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética
19.
New Phytol ; 242(4): 1676-1690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148573

RESUMO

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Assuntos
Florestas , Fungos , Microbiologia do Solo , Transcriptoma , Fungos/genética , Fungos/fisiologia , Transcriptoma/genética , Micorrizas/fisiologia , Micorrizas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Solo/química , Ecossistema , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Anal Biochem ; 693: 115598, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964700

RESUMO

The widespread use of polyamides such as nylons has led to the accumulation of nylon waste, which is particularly resistant to decomposition due to the intrinsic stability of the amide bond. New methods are required for the true recycling of these waste materials by depolymerization. Enzymes that are capable of hydrolyzing polyamides have been proposed as biocatalysts that may be suitable for this application. NylC is an enzyme that can mediate the hydrolysis of aminohexanoic acid oligomers, and to some extent, bulk polymers. However, current assays to characterize the activity of this enzyme require long reaction times and/or rely on secondary reactions to quantify hydrolysis. Herein, we have designed structurally-optimized small molecule chromogenic esters that serve as substrate analogues for monitoring NylC acyltransferase activity in a continuous manner. This assay can be performed in minutes at room temperature, and the substrate N-acetyl-GABA-pNP ester (kcat = 0.37 s-1, KM = 256 µM) shows selectivity for NylC in complex biological media. We also demonstrate that activity towards this substrate analogue correlates with amide hydrolysis, which is the primary activity of this enzyme. Furthermore, our screening of substrate analogues provides insight into the substrate specificity of NylC, which is relevant to biocatalytic applications.


Assuntos
Nylons , Nylons/química , Nylons/metabolismo , Hidrólise , Especificidade por Substrato , Hidrolases/metabolismo , Hidrolases/química , Aciltransferases/metabolismo , Aciltransferases/química , Aciltransferases/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA