Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Cell ; 187(3): 517-520, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306978

RESUMO

Structural biology, as powerful as it is, can be misleading. We highlight four fundamental challenges: interpreting raw experimental data; accounting for motion; addressing the misleading nature of in vitro structures; and unraveling interactions between drugs and "anti-targets." Overcoming these challenges will amplify the impact of structural biology on drug discovery.


Assuntos
Descoberta de Drogas , Biologia Molecular , Beleza
2.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750095

RESUMO

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Assuntos
Bactérias , Bacteriófagos , Animais , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , Imunidade , Nucleotidiltransferases/metabolismo
3.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044899

RESUMO

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Assuntos
Infestações por Ácaros , Ácaros , Animais , Citocinas , Folículo Piloso/patologia , Humanos , Imunidade Inata , Inflamação , Interleucina-13 , Linfócitos/patologia , Camundongos , Infestações por Ácaros/complicações , Infestações por Ácaros/parasitologia , Infestações por Ácaros/patologia , Simbiose
4.
Cell ; 154(4): 775-88, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23932120

RESUMO

RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between individual regions and other protein complexes. Using splicing microarrays and mutants that alter elongation rates in vitro, we found an inverse relationship between RNAPII speed and in vivo splicing efficiency. Furthermore, the pE-MAP classified fast and slow mutants that favor upstream and downstream start site selection, respectively. The striking coordination of polymerization rate with transcription initiation and splicing suggests that transcription rate is tuned to regulate multiple gene expression steps. The pE-MAP approach provides a powerful strategy to understand other multifunctional machines at amino acid resolution.


Assuntos
Epistasia Genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alelos , Estudo de Associação Genômica Ampla , Mutação Puntual , RNA Polimerase II/química , Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transcriptoma
5.
PLoS Biol ; 22(2): e3002502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421949

RESUMO

Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints.


Assuntos
Revisão por Pares , Pesquisadores , Humanos , Movimento (Física)
6.
Cell ; 150(2): 413-25, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817900

RESUMO

Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.


Assuntos
Eucariotos/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Ubiquitinação
7.
Nature ; 586(7828): 317-321, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640464

RESUMO

Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, is a flavin adenine dinucleotide-, thiamine diphosphate- and magnesium-dependent enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids1. It is the target for more than 50 commercial herbicides2. AHAS requires both catalytic and regulatory subunits for maximal activity and functionality. Here we describe structures of the hexadecameric AHAS complexes of Saccharomyces cerevisiae and dodecameric AHAS complexes of Arabidopsis thaliana. We found that the regulatory subunits of these AHAS complexes form a core to which the catalytic subunit dimers are attached, adopting the shape of a Maltese cross. The structures show how the catalytic and regulatory subunits communicate with each other to provide a pathway for activation and for feedback inhibition by branched-chain amino acids. We also show that the AHAS complex of Mycobacterium tuberculosis adopts a similar structure, thus demonstrating that the overall AHAS architecture is conserved across kingdoms.


Assuntos
Acetolactato Sintase/química , Arabidopsis/enzimologia , Saccharomyces cerevisiae/enzimologia , Acetolactato Sintase/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Domínio Catalítico , Ativação Enzimática , Evolução Molecular , Retroalimentação Fisiológica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Valina/metabolismo
8.
Nature ; 586(7827): 145-150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968273

RESUMO

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Estreptogramina Grupo A/síntese química , Estreptogramina Grupo A/farmacologia , Acetilação/efeitos dos fármacos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Antibacterianos/classificação , Carga Bacteriana/efeitos dos fármacos , Sítios de Ligação , Microscopia Crioeletrônica , Feminino , Técnicas In Vitro , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Estreptogramina Grupo A/química , Estreptogramina Grupo A/classificação , Virginiamicina/análogos & derivados , Virginiamicina/química , Virginiamicina/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598939

RESUMO

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Pandemias , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/química
10.
PLoS Pathog ; 19(3): e1011146, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862759

RESUMO

Ancylostoma caninum is an important zoonotic gastrointestinal nematode of dogs worldwide and a close relative of human hookworms. We recently reported that racing greyhound dogs in the USA are infected with A. caninum that are commonly resistant to multiple anthelmintics. Benzimidazole resistance in A. caninum in greyhounds was associated with a high frequency of the canonical F167Y(TTC>TAC) isotype-1 ß-tubulin mutation. In this work, we show that benzimidazole resistance is remarkably widespread in A. caninum from domestic dogs across the USA. First, we identified and showed the functional significance of a novel benzimidazole isotype-1 ß-tubulin resistance mutation, Q134H(CAA>CAT). Several benzimidazole resistant A. caninum isolates from greyhounds with a low frequency of the F167Y(TTC>TAC) mutation had a high frequency of a Q134H(CAA>CAT) mutation not previously reported from any eukaryotic pathogen in the field. Structural modeling predicted that the Q134 residue is directly involved in benzimidazole drug binding and that the 134H substitution would significantly reduce binding affinity. Introduction of the Q134H substitution into the C. elegans ß-tubulin gene ben-1, by CRISPR-Cas9 editing, conferred similar levels of resistance as a ben-1 null allele. Deep amplicon sequencing on A. caninum eggs from 685 hookworm positive pet dog fecal samples revealed that both mutations were widespread across the USA, with prevalences of 49.7% (overall mean frequency 54.0%) and 31.1% (overall mean frequency 16.4%) for F167Y(TTC>TAC) and Q134H(CAA>CAT), respectively. Canonical codon 198 and 200 benzimidazole resistance mutations were absent. The F167Y(TTC>TAC) mutation had a significantly higher prevalence and frequency in Western USA than in other regions, which we hypothesize is due to differences in refugia. This work has important implications for companion animal parasite control and the potential emergence of drug resistance in human hookworms.


Assuntos
Ancylostoma , Anti-Helmínticos , Animais , Cães , Ancylostoma/genética , Ancylostomatoidea , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Caenorhabditis elegans , Resistência a Medicamentos/genética , Mutação , Tubulina (Proteína)/genética
11.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651466

RESUMO

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Replicação Viral , Animais , Humanos , Camundongos , Alanina , Antivirais , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(11): e2115480119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254891

RESUMO

SignificanceComputational protein design promises to advance applications in medicine and biotechnology by creating proteins with many new and useful functions. However, new functions require the design of specific and often irregular atom-level geometries, which remains a major challenge. Here, we develop computational methods that design and predict local protein geometries with greater accuracy than existing methods. Then, as a proof of concept, we leverage these methods to design new protein conformations in the enzyme ketosteroid isomerase that change the protein's preference for a key functional residue. Our computational methods are openly accessible and can be applied to the design of other intricate geometries customized for new user-defined protein functions.


Assuntos
Aminoácidos/química , Desenho Assistido por Computador , Engenharia de Proteínas/métodos , Proteínas/química , Robótica , Algoritmos , Biologia Computacional/métodos , Isomerases/química , Modelos Moleculares , Conformação Proteica , Proteínas/genética , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
13.
Nat Methods ; 18(2): 156-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542514

RESUMO

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Proteínas/química
14.
Opt Lett ; 49(3): 738-741, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300103

RESUMO

Laser additive manufacturing (AM) promises direct metal 3D printing, but is held back by defects and process instabilities, giving rise to a need for in situ process monitoring. Inline coherent imaging (ICI) has proven effective for in situ, direct measurements of vapor depression depth and shape in AM and laser welding but struggles to track turbulent interfaces due to poor coupling back into a single-mode fiber and the presence of artifacts. By z-domain multiplexing, we achieve phase-sensitive image consolidation, automatically attenuating autocorrelation artifacts and improving interface tracking rates by 58% in signal-starved applications.

15.
Nat Chem Biol ; 18(2): 161-170, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931064

RESUMO

Multi-enzyme assemblies composed of metabolic enzymes catalyzing sequential reactions are being increasingly studied. Here, we report the discovery of a 1.6 megadalton multi-enzyme complex from Bacillus subtilis composed of two enzymes catalyzing opposite ('counter-enzymes') rather than sequential reactions: glutamate synthase (GltAB) and glutamate dehydrogenase (GudB), which make and break glutamate, respectively. In vivo and in vitro studies show that the primary role of complex formation is to inhibit the activity of GudB. Using cryo-electron microscopy, we elucidated the structure of the complex and the molecular basis of inhibition of GudB by GltAB. The complex exhibits unusual oscillatory progress curves and is necessary for both planktonic growth, in glutamate-limiting conditions, and for biofilm growth, in glutamate-rich media. The regulation of a key metabolic enzyme by complexing with its counter enzyme may thus enable cell growth under fluctuating glutamate concentrations.


Assuntos
Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Sintase/metabolismo , Ácido Glutâmico/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias , Glutamato Desidrogenase/genética , Glutamato Sintase/genética
16.
J Surg Res ; 299: 213-216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776576

RESUMO

INTRODUCTION: The American Urological Association guidelines recommend against the performance of ultrasound and other imaging modalities in the evaluation of patients with cryptorchidism before expert consultation. We aimed to examine our institutional experience with cryptorchidism and measure adherence to currently available guidelines. METHODS: An institutional review board-approved retrospective review of ultrasound utilization in the evaluation of patients with cryptorchidism was performed from June 1, 2016, to June 30, 2019, at a single tertiary level pediatric hospital. RESULTS: We identified 1796 patients evaluated in surgical clinics for cryptorchidism. Surgical intervention was performed in 75.2% (n = 1351) of the entire cohort. Ultrasound was performed in 42% (n = 754), most of which were ordered by referring physicians (91% n = 686). Of those who received an ultrasound, surgical intervention was performed in 78% (n = 588). Those 166 patients (22%) who did not undergo surgical intervention were referred with ultrasounds suggesting inguinal testes; however, all had normal physical examinations or mildly retractile testes at the time of consultation and were discharged from the outpatient clinic. There were 597 patients referred without an ultrasound, 81% (n = 483) were confirmed to have cryptorchidism at the time of specialist physical examination and underwent definitive surgical intervention, the remainder (19%, n = 114) were discharged from the outpatient clinics. CONCLUSIONS: Ultrasound evaluation of cryptorchidism continues despite high-quality evidence-based guidelines that recommend otherwise, as they should have little to no bearing on the surgeon's decision to operate or the type of operation. Instead, physical examination findings should guide surgical planning.


Assuntos
Criptorquidismo , Fidelidade a Diretrizes , Ultrassonografia , Humanos , Criptorquidismo/diagnóstico por imagem , Criptorquidismo/cirurgia , Masculino , Estudos Retrospectivos , Ultrassonografia/normas , Pré-Escolar , Lactente , Fidelidade a Diretrizes/estatística & dados numéricos , Criança , Guias de Prática Clínica como Assunto , Testículo/diagnóstico por imagem , Testículo/cirurgia , Encaminhamento e Consulta/normas , Encaminhamento e Consulta/estatística & dados numéricos , Adolescente
17.
Nurs Crit Care ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38168048

RESUMO

BACKGROUND: Patients with long term and additional needs (LEAP) in paediatric intensive care units (PICUs) are a growing and heterogenous cohort that provide unique challenges to clinicians. Currently no standard approach to define and manage this cohort exists. AIM: To analyse bed occupancy, examine current practice, and explore ideas to improve PICU care of patients with long term and additional needs. STUDY DESIGN: Patients with LEAP were defined as meeting two or more of the following criteria: length of stay >14 days; life limiting condition; ≥2 failed extubations; hospital stay >1 month prior to PICU admission; likely to require long-term ventilation. An electronic survey was then sent to all UK PICUs, via the UK Paediatric Critical Care Society, to collect quantitative and qualitative data relating to bed occupancy, length of stay, multidisciplinary and family involvement, and areas of possible improvement. Data collection were occurred between 8 February 2022 and 14 March 2022. Quantitative data were analysed using Microsoft Excel 365 and SPSS Statistics version 28.0. Raw data and descriptive statistics were reported, including percentages and median with interquartile range for non-parametric data. Qualitative raw data were examined using thematic analysis. Analysis was undertaken independently by two authors and results assessed for concordance. RESULTS: 70.1% (17/24) PICUs responded. 25% (67/259) of PICU beds were occupied by patients with long term and additional needs. 29% (5/17) of responding units have tailored management plans to this cohort of patient. A further 11% (2/17) have guidelines for children with generic chronic illness. 12% (2/16) of responding units had a designated area and 81% (13/16) of responding units had designated professionals. The majority (68% and 62%) of responding units engaged families and community professionals in multidisciplinary meetings. When asked how the care of long term and additional needs patients might be improved five themes were identified: consistent, streamlined care pathways; designated transitional care units; designated funding and hospital-to-home commissioning; development of roles to facilitate collaboration between hospital and community teams; proactive discharge planning and parallel planning. CONCLUSIONS: This survey provides a snapshot of UK practice for a cohort of patients that occupies a considerable proportion (29%) of PICU beds. While only a minority of responding PICUs offer specifically tailored management plans, the majority of units have designated professionals. RELEVANCE TO CLINICAL PRACTICE: Opportunities exist to improve PICU care in LEAP patients in areas such as: streamlined care pathways, designated clinical areas, designated funding, and development of defined collaborative roles. Next steps may involve working group convention to develop a consensus definition and share good practice examples.

18.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
19.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37535945

RESUMO

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Assuntos
Fluordesoxiglucose F18 , Trealose , Humanos , Celobiose , Staphylococcus aureus , Tomografia por Emissão de Pósitrons/métodos , Bactérias
20.
Ann Surg ; 277(6): e1373-e1379, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35797475

RESUMO

OBJECTIVE: To assess the clinical implications of cryoanalgesia for pain management in children undergoing minimally invasive repair of pectus excavatum (MIRPE). BACKGROUND: MIRPE entails significant pain management challenges, often requiring high postoperative opioid use. Cryoanalgesia, which blocks pain signals by temporarily ablating intercostal nerves, has been recently utilized as an analgesic adjunct. We hypothesized that the use of cryoanalgesia during MIRPE would decrease postoperative opioid use and length of stay (LOS). MATERIALS AND METHODS: A multicenter retrospective cohort study of 20 US children's hospitals was conducted of children (age below 18 years) undergoing MIRPE from January 1, 2014, to August 1, 2019. Differences in total postoperative, inpatient, oral morphine equivalents per kilogram, and 30-day LOS between patients who received cryoanalgesia versus those who did not were assessed using bivariate and multivariable analysis. P value <0.05 is considered significant. RESULTS: Of 898 patients, 136 (15%) received cryoanalgesia. Groups were similar by age, sex, body mass index, comorbidities, and Haller index. Receipt of cryoanalgesia was associated with lower oral morphine equivalents per kilogram (risk ratio=0.43, 95% confidence interval: 0.33-0.57) and a shorter LOS (risk ratio=0.66, 95% confidence interval: 0.50-0.87). Complications were similar between groups (29.8% vs 22.1, P =0.07), including a similar rate of emergency department visit, readmission, and/or reoperation. CONCLUSIONS: Use of cryoanalgesia during MIRPE appears to be effective in lowering postoperative opioid requirements and LOS without increasing complication rates. With the exception of preoperative gabapentin, other adjuncts appear to increase and/or be ineffective at reducing opioid utilization. Cryoanalgesia should be considered for patients undergoing this surgery.


Assuntos
Tórax em Funil , Transtornos Relacionados ao Uso de Opioides , Criança , Humanos , Adolescente , Analgésicos Opioides/uso terapêutico , Estudos Retrospectivos , Tórax em Funil/cirurgia , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Morfina , Procedimentos Cirúrgicos Minimamente Invasivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA