Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 24(1): 75-86, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17549591

RESUMO

Astrocyte and microglia cells play an important role in the central nervous system (CNS). They react to various external aggressions by becoming reactive and releasing neurotrophic and/or neurotoxic factors. Rutin is a flavonoid found in many plants and has been shown to have some biological activities, but its direct effects on cells of the CNS have not been well studied. To investigate its potential effects on CNS glial cells, we used both astrocyte primary cultures and astrocyte/microglia mixed primary cell cultures derived from newborn rat cortical brain. The cultures were treated for 24 h with rutin (50 or 100 micromol/L) or vehicle (0.5% dimethyl sulfoxide). Mitochondrial function on glial cells was not evidenced by the MTT test. However, an increased lactate dehydrogenase activity was detected in the culture medium of both culture systems when treated with 100 micromol/L rutin, suggesting loss of cell membrane integrity. Astrocytes exposed to 50 micromol/L rutin became reactive as revealed by glial fibrillary acidic protein (GFAP) overexpression and showed a star-like phenotype revealed by Rosenfeld's staining. The number of activated microglia expressing OX-42 increased in the presence of rutin. A significant increase of nitric oxide (NO) was observed only in mixed cultures exposed to 100 micromol/L rutin. Enhanced TNFalpha release was observed in astrocyte primary cultures treated with 100 micromol/L rutin and in mixed primary cultures treated with 50 and 100 micromol/L, suggesting different sensitivity of both activated cell types. These results demonstrated that rutin affects astrocytes and microglial cells in culture and has the capacity to induce NO and TNFalpha production in these cells. Hence, the impact of these effects on neurons in vitro and in vivo needs to be studied.


Assuntos
Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Microglia/citologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Rutina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bisbenzimidazol , Western Blotting , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/biossíntese
2.
Toxicon ; 49(5): 601-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17241650

RESUMO

Prosopis juliflora is used for feeding cattle and humans. Intoxication with the plant has been reported, and is characterized by neuromuscular alterations and gliosis. Total alkaloidal extract (TAE) was obtained using acid/basic-modified extraction and was fractionated. TAE and seven alkaloidal fractions, at concentrations ranging 0.03-30 microg/ml, were tested for 24h on astrocyte primary cultures derived from the cortex of newborn Wistar rats. The MTT test and the measure of LDH activity on the culture medium, revealed that TAE and fractions F29/30, F31/33, F32 and F34/35 were cytotoxic to astrocytes. The EC(50) values for the most toxic compounds, TAE, F31/33 and F32 were 2.87 2.82 and 3.01 microg/ml, respectively. Morphological changes and glial cells activation were investigated through Rosenfeld's staining, by immunocytochemistry for the protein OX-42, specific of activated microglia, by immunocytochemistry and western immunoblot for GFAP, the marker of reactive and mature astrocytes, and by the production of nitric oxide (NO). We observed that astrocytes exposed to 3 microg/ml TAE, F29/30 or F31/33 developed compact cell body with many processes overexpressing GFAP. Treatment with 30 microg/ml TAE and fractions, induced cytotoxicity characterized by a strong cell body contraction, very thin and long processes and condensed chromatin. We also observed that when compared with the control (+/-1.34%), the proportion of OX-42 positive cells was increased in cultures treated with 30 microg/ml TAE or F29/30, F31/33, F32 and F34/35, with values raging from 7.27% to 28.74%. Moreover, incubation with 3 microg/ml F32, 30 microg/ml TAE, F29/30, F31/33 or F34/35 induced accumulation of nitrite in culture medium indicating induction of NO production. Taken together these results show that TAE and fractionated alkaloids from P. juliflora act directly on glial cells, inducing activation and/or cytotoxicity, stimulating NO production, and may have an impact on neuronal damages observed on intoxicated animals.


Assuntos
Alcaloides/toxicidade , Astrócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Prosopis/química , Alcaloides/isolamento & purificação , Análise de Variância , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Antígeno CD11b/metabolismo , Fracionamento Químico , Imuno-Histoquímica , L-Lactato Desidrogenase/metabolismo , Ratos , Ratos Wistar , Sais de Tetrazólio , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA