RESUMO
Widely used as wood preservatives for the last century, Pentachlorophenol (PCP) and chromated copper arsenate (CCA) have been shown to leach from treated surfaces and contaminate soil of wood storage sites. We performed a four-year field phytoremediation trial in southern Quebec (Canada) on a site contaminated with PCP and CCA with the following objectives: (1) assess the potential of willow, fescue, alfalfa and Indian mustard to tolerate and translocate CCA and PCP residues in their aerial tissues, (2) investigate the possibility of phytoextraction of dioxins and furans, and (3) test the effect of nitrogen fertilizer on phytoremediation performance. We showed that while nitrogen fertilization increased the chlorophyll content of plants, it did not result in a significantly greater plant biomass. We also showed that plants grown in the presence of PCP/CCA residues were able to translocate and concentrate trace elements in their aerial tissues, but also dioxins and furans (PCDD/F). This suggests that plants grown on sites polluted by PCP might contain dioxins and furans and should be treated as contaminated by these toxic chemicals. Finally, the reduction of soil contaminants at the end of the trial suggests that phytoremediation is a promising approach for decontaminating such sites.
Assuntos
Arsênio , Dioxinas , Furanos , Poluentes do Solo , Arseniatos , Arsênio/análise , Biodegradação Ambiental , Canadá , Cromo/análise , Cobre/análise , Dioxinas/análise , Quebeque , Solo , Poluentes do Solo/análise , MadeiraRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.