Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Pathog ; 19(4): e1011307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043515

RESUMO

Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Animais , Vírus Chikungunya/fisiologia , Mosquitos Vetores
2.
Clin Infect Dis ; 76(2): 335-337, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36184991

RESUMO

In Australia, Japanese encephalitis virus circulated in tropical north Queensland between 1995 and 2005. In 2022, a dramatic range expansion across the southern states has resulted in 30 confirmed human cases and 6 deaths. We discuss the outbreak drivers and estimate the potential size of the human population at risk.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Humanos , Encefalite Japonesa/epidemiologia , Austrália/epidemiologia , Surtos de Doenças , Fatores de Risco
3.
Med Vet Entomol ; 37(4): 826-833, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37622600

RESUMO

Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.


Assuntos
Aedes , Feminino , Masculino , Animais , Reprodução , Inseminação , Itália , Biologia , Espécies Introduzidas , Mosquitos Vetores
4.
Environ Res ; 196: 110900, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636184

RESUMO

BACKGROUND: Previous studies have shown associations between local weather factors and dengue incidence in tropical and subtropical regions. However, spatial variability in those associations remains unclear and evidence is scarce regarding the effects of weather extremes. OBJECTIVES: We examined spatial variability in the effects of various weather conditions on the unprecedented dengue outbreak in Guangdong province of China in 2014 and explored how city characteristics modify weather-related risk. METHODS: A Bayesian spatial conditional autoregressive model was used to examine the overall and city-specific associations of dengue incidence with weather conditions including (1) average temperature, temperature variation, and average rainfall; and (2) weather extremes including numbers of days of extremely high temperature and high rainfall (both used 95th percentile as the cut-off). This model was run for cumulative dengue cases during five months from July to November (accounting for 99.8% of all dengue cases). A further analysis based on spatial variability was used to validate the modification effects by economic, demographic and environmental factors. RESULTS: We found a positive association of dengue incidence with average temperature in seven cities (relative risk (RR) range: 1.032 to 1.153), a positive association with average rainfall in seven cities (RR range: 1.237 to 1.974), and a negative association with temperature variation in four cities (RR range: 0.315 to 0.593). There was an overall positive association of dengue incidence with extremely high temperature (RR:1.054, 95% credible interval (CI): 1.016 to 1.094), without evidence of variation across cities, and an overall positive association of dengue with extremely high rainfall (RR:1.505, 95% CI: 1.096 to 2.080), with seven regions having stronger associations (RR range: 1.237 to 1.418). Greater effects of weather conditions appeared to occur in cities with higher economic level, lower green space coverage and lower elevation. CONCLUSIONS: Spatially varied effects of weather conditions on dengue outbreaks necessitate area-specific dengue prevention and control measures. Extremes of temperature and rainfall have strong and positive associations with dengue outbreaks.


Assuntos
Dengue , Clima Extremo , Teorema de Bayes , China/epidemiologia , Cidades/epidemiologia , Dengue/epidemiologia , Surtos de Doenças , Humanos , Incidência , Tempo (Meteorologia)
5.
Environ Res ; 195: 110849, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561446

RESUMO

BACKGROUND: The mosquitoes Aedes aegypti and Ae. albopictus are the primary vectors of dengue virus, and their geographic distributions are predicted to expand further with economic development, and in response to climate change. We aimed to estimate the impact of future climate change on dengue transmission through the development of a Suitable Conditions Index (SCI), based on climatic variables known to support vectorial capacity. We calculated the SCI based on various climate change scenarios for six countries in the Asia-Pacific region (Australia, China, Indonesia, The Philippines, Thailand and Vietnam). METHODS: Monthly raster climate data (temperature and precipitation) were collected for the period January 2005 to December 2018 along with projected climate estimates for the years 2030, 2050 and 2070 using Representative Concentration Pathway (RCP) 4·5, 6·0 and 8·5 emissions scenarios. We defined suitable temperature ranges for dengue transmission of between 17·05-34·61 °C for Ae. aegypti and 15·84-31·51 °C for Ae. albopictus and then developed a historical and predicted SCI based on weather variability to measure the expected geographic limits of dengue vectorial capacity. Historical and projected SCI values were compared through difference maps for the six countries. FINDINGS: Comparing different emission scenarios across all countries, we found that most South East Asian countries showed either a stable pattern of high suitability, or a potential decline in suitability for both vectors from 2030 to 2070, with a declining pattern particularly evident for Ae. albopictus. Temperate areas of both China and Australia showed a less stable pattern, with both moderate increases and decreases in suitability for each vector in different regions between 2030 and 2070. INTERPRETATION: The SCI will be a useful index for forecasting potential dengue risk distributions in response to climate change, and independently of the effects of human activity. When considered alongside additional correlates of infection such as human population density and socioeconomic development indicators, the SCI could be used to develop an early warning system for dengue transmission.


Assuntos
Aedes , Dengue , Animais , Austrália , China , Mudança Climática , Dengue/epidemiologia , Humanos , Indonésia/epidemiologia , Mosquitos Vetores , Tailândia , Vietnã
6.
Int J Biometeorol ; 65(7): 1033-1042, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33598765

RESUMO

Dengue transmission is climate-sensitive and permissive conditions regularly cause large outbreaks in Asia-Pacific area. As climate change progresses, extreme weather events such as heatwaves and unusually high rainfall are predicted more intense and frequent, but their impacts on dengue outbreaks remain unclear so far. This paper aimed to investigate the relationship between extreme weather events (i.e., heatwaves, extremely high rainfall and extremely high humidity) and dengue outbreaks in China. We obtained daily number of locally acquired dengue cases and weather factors for Guangzhou, China, for the period 2006-2015. The definition of dengue outbreaks was based on daily number of locally acquired cases above the threshold (i.e., mean + 2SD of daily distribution of dengue cases during peaking period). Heatwave was defined as ≥2 days with temperature ≥ 95th percentile, and extreme rainfall and humidity defined as daily values ≥95th percentile during 2006-2015. A generalized additive model was used to examine the associations between extreme weather events and dengue outbreaks. Results showed that all three extreme weather events were associated with increased risk of dengue outbreaks, with a risk increase of 115-251% around 6 weeks after heatwaves, 173-258% around 6-13 weeks after extremely high rainfall, and 572-587% around 6-13 weeks after extremely high humidity. Each extreme weather event also had good capacity in predicting dengue outbreaks, with the model's sensitivity, specificity, accuracy, and area under the receiver operating characteristics curve all exceeding 86%. This study found that heatwaves, extremely high rainfall, and extremely high humidity could act as potential drivers of dengue outbreaks.


Assuntos
Dengue , Clima Extremo , Ásia , China/epidemiologia , Dengue/epidemiologia , Surtos de Doenças , Humanos , Dinâmica não Linear , Tempo (Meteorologia)
7.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443506

RESUMO

Macrophages play a prominent role in wound healing. In the early stages, they promote inflammation and remove pathogens, wound debris, and cells that have apoptosed. Later in the repair process, they dampen inflammation and secrete factors that regulate the proliferation, differentiation, and migration of keratinocytes, fibroblasts, and endothelial cells, leading to neovascularisation and wound closure. The macrophages that coordinate this repair process are complex: they originate from different sources and have distinct phenotypes with diverse functions that act at various times in the repair process. Macrophages in individuals with diabetes are altered, displaying hyperresponsiveness to inflammatory stimulants and increased secretion of pro-inflammatory cytokines. They also have a reduced ability to phagocytose pathogens and efferocytose cells that have undergone apoptosis. This leads to a reduced capacity to remove pathogens and, as efferocytosis is a trigger for their phenotypic switch, it reduces the number of M2 reparative macrophages in the wound. This can lead to diabetic foot ulcers (DFUs) forming and contributes to their increased risk of not healing and becoming infected, and potentially, amputation. Understanding macrophage dysregulation in DFUs and how these cells might be altered, along with the associated inflammation, will ultimately allow for better therapies that might complement current treatment and increase DFU's healing rates.


Assuntos
Diabetes Mellitus/patologia , Macrófagos/patologia , Pele/patologia , Cicatrização , Animais , Humanos , Inflamação/patologia , Modelos Biológicos
8.
BMC Infect Dis ; 20(1): 722, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008314

RESUMO

BACKGROUND: Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. METHODS: The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001-2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. RESULTS: The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. CONCLUSIONS: Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.


Assuntos
Infecções por Alphavirus/epidemiologia , Ross River virus , Adulto , Infecções por Alphavirus/transmissão , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Queensland/epidemiologia , Saúde da População Rural , Saúde da População Urbana
9.
Environ Res ; 175: 213-220, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136953

RESUMO

BACKGROUND: Although the association between dengue in Bali, Indonesia, and imported dengue in Australia has been widely asserted, no study has quantified this association so far. METHODS: Monthly data on dengue and climatic factors over the past decade for Bali and Jakarta as well as monthly data on imported dengue in Australia underwent a three-stage analysis. Stage I: a quasi-Poisson regression with distributed lag non-linear model was used to assess the associations of climatic factors with dengue in Bali. Stage II: a generalized additive model was used to quantify the association of dengue in Bali with imported dengue in Australia with and without including the number of travelers in log scale as an offset. Stage III: the associations of mean temperature and rainfall (two climatic factors identified in stage I) in Bali with imported dengue in Australia were examined using stage I approach. RESULTS: The number of dengue cases in Bali increased with increasing mean temperature, and, up to a certain level, it also increased with increasing rainfall but dropped off for high levels of rainfall. Above a monthly incidence of 1.05 cases per 100,000, dengue in Bali was almost linearly associated with imported dengue in Australia at a lag of one month. Mean temperature (relative risk (RR) per 0.5 °C increase: 2.95, 95% confidence interval (CI): 1.87, 4.66) and rainfall (RR per 7.5 mm increase: 3.42, 95% CI: 1.07, 10.92) in Bali were significantly associated with imported dengue in Australia at a lag of four months. CONCLUSIONS: This study suggests that climatic factors (i.e., mean temperature and rainfall) known to be conducive of dengue transmission in Bali can provide an early warning with 4-month lead time for Australia in order to mitigate future outbreaks of local dengue in Australia. This study also provides a template and framework for future surveillance of travel-related infectious diseases globally.


Assuntos
Dengue/epidemiologia , Doença Relacionada a Viagens , Austrália/epidemiologia , Epidemias , Humanos , Incidência , Indonésia/epidemiologia , Viagem , Tempo (Meteorologia)
10.
PLoS Pathog ; 12(9): e1005888, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27661080

RESUMO

Wolbachia are maternally transmitted intracellular bacterial symbionts that infect approximately 40% of all insect species. Though several strains of Wolbachia naturally infect Drosophila melanogaster and provide resistance against viral pathogens, or provision metabolites during periods of nutritional stress, one virulent strain, wMelPop, reduces fly lifespan by half, possibly as a consequence of over-replication. While the mechanisms that allow wMelPop to over-replicate are still of debate, a unique tandem repeat locus in the wMelPop genome that contains eight genes, referred to as the "Octomom" locus has been identified and is thought to play an important regulatory role. Estimates of Octomom locus copy number correlated increasing copy number to both Wolbachia bacterial density and increased pathology. Here we demonstrate that infected fly pathology is not dependent on an increased Octomom copy number, but does strongly correlate with increasing temperature. When measured across developmental time, we also show Octomom copy number to be highly variable across developmental time within a single generation. Using a second pathogenic strain of Wolbachia, we further demonstrate reduced insect lifespan can occur independently of a high Octomom locus copy number. Taken together, this data demonstrates that the mechanism/s of wMelPop virulence is more complex than has been previously described.

11.
BMC Infect Dis ; 18(1): 631, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526514

RESUMO

BACKGROUD: Primate erythroparvovirus 1 (B19V) is a globally ubiquitous DNA virus. Infection results in a variety of clinical presentations including erythema infectiosum in children and arthralgia in adults. There is limited understanding of the seroprevalence of B19V antibodies in the Australian population and therefore of population-wide immunity. This study aimed to investigate the seroprevalence of B19V antibodies in an Australian blood donor cohort, along with a cohort from a paediatric population. METHODS: Age/sex/geographical location stratified plasma samples (n = 2221) were collected from Australian blood donors. Samples were also sourced from paediatric patients (n = 223) in Queensland. All samples were screened for B19V IgG using an indirect- enzyme-linked immunosorbent assay. RESULTS: Overall, 57.90% (95% CI: 55.94%-59.85%) of samples tested positive for B19V IgG, with the national age-standardized seroprevalence of B19V exposure in Australians aged 0 to 79 years estimated to be 54.41%. Increasing age (p < 0.001) and state of residence (p < 0.001) were independently associated with B19V exposure in blood donors, with the highest rates in donors from Tasmania (71.88%, 95% CI: 66.95%-76.80%) and donors aged 65-80 years (78.41%, 95% CI: 74.11%-82.71%). A seroprevalence of 52.04% (95% CI: 47.92%-56.15%) was reported in women of child-bearing age (16 to 44 years). Sex was not associated with exposure in blood donors (p = 0.547) or in children (p = 0.261) screened in this study. CONCLUSIONS: This study highlights a clear association between B19V exposure and increasing age, with over half of the Australian population likely to be immune to this virus. Differences in seroprevalence were also observed in donors residing in different states, with a higher prevalence reported in those from the southern states. The finding is consistent with previous studies, with higher rates observed in countries with a higher latitude. This study provides much needed insight into the prevalence of B19V exposure in the Australian population, which has implications for public health as well as transfusion and transplantation safety in Australia.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Parvoviridae/epidemiologia , Parvovirus B19 Humano/imunologia , Primatas/virologia , Adolescente , Adulto , Idoso , Animais , Austrália/epidemiologia , Doadores de Sangue/estatística & dados numéricos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Infecções por Parvoviridae/sangue , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Prevalência , Estudos Soroepidemiológicos , Adulto Jovem
12.
Aust N Z J Obstet Gynaecol ; 58(3): 341-348, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29280134

RESUMO

BACKGROUND: We know very little about the microbiota inhabiting the upper female reproductive tract and how it impacts on fertility. AIMS: This pilot study aimed to examine the vaginal, cervical and endometrial microbiota for women with a history of infertility compared to women with a history of fertility. MATERIALS AND METHODS: Using a retrospective case-control study design, women were recruited for collection of vaginal, cervical and endometrial samples. The microbiota composition was analysed by 16S ribosomal RNA (rRNA) gene amplification and endometrial expression of selected human genes by quantitative reverse transcription polymerase chain reaction. RESULTS: Sixty-five specimens from the reproductive tract of 31 women were successfully analysed using 16S rRNA gene amplicon sequencing (16 controls and 15 cases). The dominant microbial community members were consistent in the vagina and cervix, and generally consistent with the endometrium although the relative proportions varied. We detected three major microbiota clusters that did not group by tissue location or case-control status. There was a trend that infertile women more often had Ureaplasma in the vagina and Gardnerella in the cervix. Testing for the expression of selected genes in the endometrium did not show evidence of correlation with case-control status, or with microbial community composition, although Tenascin-C expression correlated with a history of miscarriage. CONCLUSIONS: There is a need for further exploration of the endometrial microbiota, and how the microbiota members or profile interplays with fertility or assisted reproductive technologies.


Assuntos
Colo do Útero/microbiologia , Endométrio/microbiologia , Infertilidade Feminina , Trimestres da Gravidez , Vagina/microbiologia , Adulto , Estudos de Casos e Controles , Feminino , Idade Gestacional , Humanos , Lactobacillus/isolamento & purificação , Microbiota , Pessoa de Meia-Idade , Projetos Piloto , Gravidez , Estudos Retrospectivos
13.
Mol Biol Evol ; 32(2): 368-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25371434

RESUMO

Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod.


Assuntos
Borboletas/metabolismo , Opsinas de Bastonetes/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Opsinas de Bastonetes/metabolismo , Seleção Genética/genética , Seleção Genética/fisiologia
14.
BMC Infect Dis ; 16: 84, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936191

RESUMO

BACKGROUND: Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. METHODS: Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. RESULTS: Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. CONCLUSIONS: Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.


Assuntos
Febre de Chikungunya/epidemiologia , Coinfecção/epidemiologia , Dengue/epidemiologia , África/epidemiologia , Sudeste Asiático/epidemiologia , Saúde Global , Humanos
15.
J Med Entomol ; 53(2): 401-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721865

RESUMO

The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.


Assuntos
Culicidae/virologia , Vírus da Dengue/fisiologia , Wolbachia/fisiologia , Animais , Feminino , Ovário/microbiologia , Simbiose
17.
Proc Natl Acad Sci U S A ; 108(22): 9250-5, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576469

RESUMO

The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.


Assuntos
Aedes/metabolismo , Dengue/transmissão , Regulação da Expressão Gênica , MicroRNAs/genética , Wolbachia/metabolismo , Animais , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Insetos Vetores/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Interferência de RNA , Fatores de Tempo , Replicação Viral
18.
J Clin Microbiol ; 51(8): 2625-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740730

RESUMO

Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.


Assuntos
Doenças dos Bovinos/epidemiologia , Infecções por Chlamydia/veterinária , Chlamydia/classificação , Tipagem de Sequências Multilocus , Doenças dos Ovinos/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Chlamydia/genética , Chlamydia/isolamento & purificação , Infecções por Chlamydia/epidemiologia , Análise por Conglomerados , Variação Genética , Genótipo , Epidemiologia Molecular , Dados de Sequência Molecular , Phascolarctidae , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/microbiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-37719233

RESUMO

Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.

20.
PLoS Negl Trop Dis ; 17(3): e0011222, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36989319

RESUMO

Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.


Assuntos
Aedes , Vírus da Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Vírus da Dengue/fisiologia , Wolbachia/genética , Mosquitos Vetores , Zika virus/genética , Austrália , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA