Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Res ; 197: 111087, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798514

RESUMO

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication's CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper.


Assuntos
Bibliometria , Erosão do Solo , Agricultura , Publicações , Solo
2.
Environ Sci Technol ; 50(17): 9150-60, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27466701

RESUMO

Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.


Assuntos
Camada de Gelo/química , Lagos , Neve/química , Sulfatos
3.
Sci Total Environ ; 953: 175706, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39197760

RESUMO

Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.

4.
Sci Total Environ ; 780: 146494, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773346

RESUMO

To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.

5.
Sci Rep ; 10(1): 11654, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669567

RESUMO

The proliferation of ski run construction is a worldwide trend. The machine-grading of slopes involved during ski run construction changes the physical, chemical and biological properties of the soil, having significant long-term ecological impact on the environment. Establishing and developing plant communities in these affected areas is crucial in rehabilitating the biotic and abiotic soil environment, while also improving slope stability and reducing the risk of natural hazards. This study evaluates changes in plant-soil properties and the long-term effects of machine-grading and subsequent restoration of ski runs so as to contribute to formulating the best practices in future ski run constructions. Study plots were established in 2000 and re-surveyed in 2017 on ski runs, which had been machine-graded and hydroseeded in the 1990s. Vegetation, root trait and soil surveys were carried out on ski run plots and compared to paired, undisturbed control sites off the ski runs. Plant cover remained unchanged on the ski-runs over time but plant richness and diversity considerably increased, reaching similar levels to undisturbed vegetation. Plant composition moved towards more semi-natural stages, showing a reduction in seeded plants with a comparable increase in the cover of colonizing native species. Root trait results were site-specific showing great variations between the mid and long-term after-effects of machine-grading and revegetation when compared to undisturbed sites. Under long-term management, the soil pH was still higher and the organic C content still lower in the ski runs than in the undisturbed sites, as the aggregate stability. The standard actions applied (machine-grading, storage and re-use of topsoil, hydroseeding of commercial seed mixtures, application of manure soon after seeding and low-intensity grazing) allowed the ecosystem to partially recover in three decades, and even if the soil has still a lower chemical and physical fertility than the undisturbed sites, the plant species composition reveals a satisfactory degree of renaturalization.

6.
Sci Total Environ ; 639: 316-330, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29791884

RESUMO

Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO42-, Mg2+, Ca2+, Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO3- export.

7.
Sci Total Environ ; 595: 169-177, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384573

RESUMO

Current modelling approaches often ignore the dynamics of organic chemicals uptake/release in forest compartments under changing environmental conditions and may fail in accurately predict exposure to chemicals for humans and ecosystems. In order to investigate the influence of such dynamics on predicted concentrations in forest compartments, as well as, on air-leaf-litter fluxes, the SoilPlusVeg model was developed including a forest compartment (root, stem, leaves) in an existing air-litter-soil model. The accuracy of the model was tested simulating leaf concentrations in broadleaf woods located in Northern Italy and resulted in satisfying model performance. Illustrative simulations highlighted the "dual behaviour" of both leaf and litter compartments. Leaves appeared to behave as "filters" of air contaminants but also as "dispensers", being deposition flux exceeded by volatilization flux in some periods of the day. Similarly, litter seemed to behave as a dynamic compartment which could accumulate and then release contaminants recharging air and vegetation. In just 85days, litter could lose due to volatilization, diffusion to depth and infiltration processes, from 6% to 90% of chemical amount accumulated over 1year of exposure, depending on compound physical and chemical properties. SoilPlusVeg thus revealed to be a powerful tool to understand and estimate chemical fate and recycling in forested systems.

8.
Sci Total Environ ; 544: 382-90, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657383

RESUMO

Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Sedimentos Geológicos , Éteres Difenil Halogenados/análise , Camada de Gelo , Nepal , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
9.
Environ Sci Technol ; 42(22): 8374-80, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19068820

RESUMO

The distribution of persistent organic pollutants (POPs) within background soil profiles was investigated in boreal (Norway) and montane (Italy) areas. The typical build-up of slowly mineralizing humus layers, containing high amounts of soil organic matter (SOM) makes soils of such ecosystems an important global sink for POPs released to the environment. The study focused on evidence and implications of processes influencing the fate of POPs in soil. POP deposition, interaction with SOM, volatilization, leaching, degradation, and bioturbation are discussed. Results indicate that the less volatile POPs such as hexa- and higher chlorinated biphenyls (CBs) or polybrominated diphenyl ethers are very stable in soil profiles, undergoing little translocation or (re)transfer to other environmental compartments. In contrast, more volatile compounds (e.g., tri- and tetra-CBs) were found in soil layers below those formed from vegetation ever directly exposed to airborne POPs. This suggests the occurrence of downward transport and hence limited surface-air exchange of more volatile POPs as they are removed from the top layers. Such soils may therefore be able to retain higher amounts of these compounds than just addressed by the capacity of their surface layers.


Assuntos
Ecossistema , Compostos Orgânicos , Poluentes do Solo , Solo , Biodegradação Ambiental , Itália , Noruega , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA