Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nat Rev Genet ; 25(7): 476-499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467784

RESUMO

Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.


Assuntos
Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Expansão das Repetições de DNA/genética , Genoma Humano
2.
Genet Med ; : 101173, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38828700

RESUMO

PURPOSE: We evaluated DECIDE, an online pre-test decision-support tool for diagnostic genomic testing, in non-genetics specialty clinics where there are no genetic counselors (GCs). METHODS: Families of children offered genomic testing were eligible to participate. Fifty-six parents/guardians completed DECIDE at home, at their convenience. DECIDE includes an integrated knowledge quiz and decisional conflict screen. Six months later, parents were offered follow-up questionnaires and interviews about their experiences. RESULTS: Forty parents (71%) had sufficient knowledge and no decisional conflict surrounding their testing decision but six of this group had residual questions. These six, plus 16 with decisional conflict or insufficient knowledge, saw a genetic counselor. At follow-up, little-to-no decisional regret and few negative emotions were identified in any parents. Most chose testing and described their decision as easy, yet stressful, and described many motivations for sequencing. Parents appreciated the simple comprehensive information DECIDE provided and the ability to view it in a low stress environment. CONCLUSION: DECIDE provides adequate decision-support to enable most parents to make value-consistent choices about genetic testing for their child. Parents reported that DECIDE helped to clarify motivations for pursuing (or declining) testing. DECIDE is a timely, well tested, and accessible tool in clinical settings without GCs.

3.
Genet Med ; 26(2): 101033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007624

RESUMO

This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.


Assuntos
Farmacogenética , Variantes Farmacogenômicos , Humanos , Criança , Genômica , Mapeamento Cromossômico , Exoma
4.
Genet Med ; 26(4): 101069, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38205742

RESUMO

PURPOSE: To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS: Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS: Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION: Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.


Assuntos
Epilepsia , Criança , Humanos , Análise Custo-Benefício , Sequenciamento do Exoma , Colúmbia Britânica , Mapeamento Cromossômico
5.
Genet Med ; 25(2): 100324, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565307

RESUMO

PURPOSE: People with pre-existing conditions may be more susceptible to severe COVID-19 when infected by SARS-CoV-2. The relative risk and severity of SARS-CoV-2 infection in people with rare diseases such as neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), or schwannomatosis (SWN) is unknown. METHODS: We investigated the proportions of people with NF1, NF2, or SWN in the National COVID Cohort Collaborative (N3C) electronic health record data set who had a positive test result for SARS-CoV-2 or COVID-19. RESULTS: The cohort sizes in N3C were 2501 (NF1), 665 (NF2), and 762 (SWN). We compared these with N3C cohorts of patients with other rare diseases (98-9844 individuals) and the general non-NF population of 5.6 million. The site- and age-adjusted proportion of people with NF1, NF2, or SWN who had a positive test result for SARS-CoV-2 or COVID-19 (collectively termed positive cases) was not significantly higher than in individuals without NF or other selected rare diseases. There were no severe outcomes reported in the NF2 or SWN cohorts. The proportion of patients experiencing severe outcomes was no greater for people with NF1 than in cohorts with other rare diseases or the general population. CONCLUSION: Having NF1, NF2, or SWN does not appear to increase the risk of being SARS-CoV-2 positive or of being a patient with COVID-19 or of developing severe complications from SARS-CoV-2.


Assuntos
COVID-19 , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Humanos , Neurofibromatose 2/complicações , Neurofibromatose 2/epidemiologia , Neurofibromatose 1/complicações , Neurofibromatose 1/epidemiologia , Doenças Raras , COVID-19/complicações , SARS-CoV-2 , Neurofibromatoses/complicações , Neurofibromatoses/epidemiologia
6.
Hum Mol Genet ; 29(19): 3266-3284, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32969477

RESUMO

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.


Assuntos
Aldeído Desidrogenase/fisiologia , Comportamento Animal , Modelos Animais de Doenças , Epilepsia/etiologia , Lisina/deficiência , Mutação , Piridoxina/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Genet Med ; 24(8): 1675-1683, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622065

RESUMO

PURPOSE: This study aimed to compare downstream utilization of medical services among critically ill infants admitted to intensive care units who received rapid exome sequencing (ES) and those who followed alternative diagnostic testing pathways. METHODS: Using propensity score-weighted regression models including sex, age at admission, and severity indicators, we compared a group of 47 infants who underwent rapid ES with a group of 211 infants who did not receive rapid ES. Utilization and cost indicators were compared between cohorts using negative binomial models for utilization and two-part models for costs. RESULTS: After controlling for patients' sociodemographic and clinical characteristics, we found no statistically significant difference in outpatient visits, hospitalizations, intensive care unit or total length of stay, or length of stay-associated costs between the cohorts at 12- or 26-month follow-up. Similarly, there was no evidence of higher utilization or costs by the ES group when infants who died were removed from the analysis. CONCLUSION: When examining utilization during and beyond the diagnostic trajectory, there is no evidence that ES changes frequency of outpatient visits or use of in-hospital resources in critically ill infants with suspected genetic disorders.


Assuntos
Estado Terminal , Exoma , Humanos , Lactente , Unidades de Terapia Intensiva , Aceitação pelo Paciente de Cuidados de Saúde , Sequenciamento do Exoma
8.
Genet Med ; 24(9): 1967-1977, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35674741

RESUMO

PURPOSE: Neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are genetically distinct tumor predisposition syndromes with overlapping phenotypes. We sought to update the diagnostic criteria for NF2 and SWN by incorporating recent advances in genetics, ophthalmology, neuropathology, and neuroimaging. METHODS: We used a multistep process, beginning with a Delphi method involving global disease experts and subsequently involving non-neurofibromatosis clinical experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing NF2 and SWN. These criteria incorporate mosaic forms of these conditions. In addition, we recommend updated nomenclature for these disorders to emphasize their phenotypic overlap and to minimize misdiagnosis with neurofibromatosis type 1. CONCLUSION: The updated criteria for NF2 and SWN incorporate clinical features and genetic testing, with a focus on using molecular data to differentiate the 2 conditions. It is likely that continued refinement of these new criteria will be necessary as investigators study the diagnostic properties of the revised criteria and identify new genes associated with SWN. In the revised nomenclature, the term "neurofibromatosis 2" has been retired to improve diagnostic specificity.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Neoplasias Cutâneas , Consenso , Humanos , Neurilemoma/diagnóstico , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/diagnóstico , Neurofibromatoses/genética , Neurofibromatose 1/genética , Neurofibromatose 2/diagnóstico , Neurofibromatose 2/genética , Neoplasias Cutâneas/genética
9.
Mol Genet Metab ; 137(4): 399-419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34872807

RESUMO

Cerebral palsy (CP) is a debilitating condition characterized by abnormal movement or posture, beginning early in development. Early family and twin studies and more recent genomic investigations clearly demonstrate that genetic factors of major effect contribute to the etiology of CP. Most copy number variants and small alterations of nucleotide sequence that cause CP arise as a result of de novo mutations, so studies that estimate heritability on basis of recurrence frequency within families substantially underestimate genetic contributions to the etiology. At least 4% of patients with typical CP have disease-causing CNVs, and at least 14% have disease-causing single nucleotide variants or indels. The rate of pathogenic genomic lesions is probably more than twice as high among patients who have atypical CP, i.e., neuromotor dysfunction with additional neurodevelopmental abnormalities or malformations, or with MRI findings and medical history that are not characteristic of a perinatal insult. Mutations of many different genetic loci can produce a CP-like phenotype. The importance of genetic variants of minor effect and of epigenetic modifications in producing a multifactorial predisposition to CP is less clear. Recognizing the specific cause of CP in an affected individual is essential to providing optimal clinical management. An etiological diagnosis provides families an "enhanced compass" that improves overall well-being, facilitates access to educational and social services, permits accurate genetic counseling, and, for a subset of patients such as those with underlying inherited metabolic disorders, may make precision therapy that targets the pathophysiology available. Trio exome sequencing with assessment of copy number or trio genome sequencing with bioinformatics analysis for single nucleotide variants, indels, and copy number variants is clinically indicated in the initial workup of CP patients, especially those with additional malformations or neurodevelopmental abnormalities.


Assuntos
Paralisia Cerebral , Gravidez , Feminino , Humanos , Paralisia Cerebral/genética , Paralisia Cerebral/diagnóstico , Variações do Número de Cópias de DNA/genética , Mutação , Sequenciamento do Exoma , Nucleotídeos
10.
J Genet Couns ; 31(1): 82-95, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165210

RESUMO

Many parents are motivated to pursue genome-wide (exome or genome) sequencing to find a diagnosis for their child with a suspected but undiagnosed genetic condition. However, the impact of the genomic test extends beyond the provision of results and the so-called 'diagnostic odyssey'. Our goal was to quantify post-test decisional regret and characterize long-term, post-test experiences and unmet needs of the parents of children with suspected genetic diseases after they had received the results of genome-wide sequencing. Study participants were parents of children who underwent trio genome-wide sequencing as part of the CAUSES research study at Children's & Women's Health Centre of British Columbia. About half of the participants received a definite or likely genetic diagnosis after clinical interpretation of the genome-wide sequencing results. Parents who participated in the current study (n = 121) completed the Decisional Regret Scale four weeks after receiving results. A subset of these parents (n = 32) had semi-structured interviews a median of 7 months (range 3-20 months) after results disclosure and post-test genetic counseling. Most parents expressed either no regret or mild regret about having undergone genome-wide sequencing on both the Decisional Regret Scale and in the interviews. Parents whose children did not receive a genetic diagnosis were slightly more likely to have decisional regret on this quantitative scale. Analysis of transcribed interviews revealed the following major themes: (a) a lack of decisional conflict around having the testing; (b) a lack of decisional regret post-testing; (c) expressions of both relief and continued uncertainty around the meaning of a genetic diagnosis; (d) expression of initial disappointment and evolving interpretation surrounding a result yielding no genetic diagnosis; and (e) needing time to absorb the test results. Our results suggest that parents need time to absorb the testing results and that long-term post-test counseling, including acknowledging feelings of relief, loss, and disappointment, may help parents adapt to the genomic test results and assist families to anticipate and plan for the next steps in their child's medical trajectory, whether or not a diagnosis is found.


Assuntos
Tomada de Decisões , Pais , Criança , Revelação , Feminino , Testes Genéticos , Humanos , Motivação , Pais/psicologia
11.
Neurogenetics ; 22(4): 251-262, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34213677

RESUMO

Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.


Assuntos
Aminas Biogênicas/metabolismo , Levodopa/genética , Neurotransmissores/líquido cefalorraquidiano , Quinases Ativadas por p21/deficiência , Adolescente , Adulto , Carbidopa/metabolismo , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Cinesinas/metabolismo , Levodopa/metabolismo , Levodopa/uso terapêutico , Masculino , Adulto Jovem , Quinases Ativadas por p21/metabolismo
12.
Genet Med ; 23(8): 1506-1513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34012067

RESUMO

PURPOSE: By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). METHODS: We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. CONCLUSION: The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS.


Assuntos
Neurofibromatose 1 , Manchas Café com Leite/genética , Consenso , Testes Genéticos , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética
13.
Am J Hum Genet ; 101(1): 65-74, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28669405

RESUMO

KCNQ5 is a highly conserved gene encoding an important channel for neuronal function; it is widely expressed in the brain and generates M-type current. Exome sequencing identified de novo heterozygous missense mutations in four probands with intellectual disability, abnormal neurological findings, and treatment-resistant epilepsy (in two of four). Comprehensive analysis of this potassium channel for the four variants expressed in frog oocytes revealed shifts in the voltage dependence of activation, including altered activation and deactivation kinetics. Specifically, both loss-of-function and gain-of-function KCNQ5 mutations, associated with increased excitability and decreased repolarization reserve, lead to pathophysiology.


Assuntos
Epilepsia/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Canais de Potássio KCNQ/genética , Mutação/genética , Eletroencefalografia , Humanos , Ativação do Canal Iônico , Canais de Potássio KCNQ/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenótipo , Alinhamento de Sequência
14.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
15.
Genet Med ; 22(9): 1570, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32651549

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Genet Med ; 22(9): 1437-1449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32576987

RESUMO

As genetics becomes increasingly integrated into all areas of health care and the use of complex genetic tests continues to grow, the clinical genetics workforce will likely face greatly increased demand for its services. To inform strategic planning by health-care systems to prepare to meet this future demand, we performed a scoping review of the genetics workforce in high-income countries, summarizing all available evidence on its composition and capacity published between 2010 and 2019. Five databases (MEDLINE, Embase, PAIS, CINAHL, and Web of Science) and gray literature sources were searched, resulting in 162 unique studies being included in the review. The evidence presented includes the composition and size of the workforce, the scope of practice for genetics and nongenetics specialists, the time required to perform genetics-related tasks, case loads of genetics providers, and opportunities to increase efficiency and capacity. Our results indicate that there is currently a shortage of genetics providers and that there is a lack of consensus about the appropriate boundaries between the scopes of practice for genetics and nongenetics providers. Moreover, the results point to strategies that may be used to increase productivity and efficiency, including alternative service delivery models, streamlining processes, and the automation of tasks.


Assuntos
Atenção à Saúde , Países Desenvolvidos , Humanos , Recursos Humanos
17.
Genet Med ; 22(2): 292-300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31462755

RESUMO

PURPOSE: This study describes the cost trajectory of the standard diagnostic care pathway for children with suspected genetic disorders in British Columbia, Canada. METHODS: Average annual per-patient costs were estimated using medical records review and a caregiver survey for a cohort of 498 children referred to BC Children's and Women's Hospitals (C&W) with unexplained intellectual disability (the TIDE-BC study) and families enrolled in the CAUSES study, which offered diagnostic genome-wide sequencing (GWS; exome and genome sequencing) to 500 families of children with suspected genetic disorders. RESULTS: Direct costs peaked in the first year of patients' diagnostic odyssey, with an average of C$2257 per patient (95% confidence interval [CI] C$2074, C$2441) for diagnostic testing and C$631 (95% CI C$543, C$727) for specialist consultations at C&W. In subsequent years, direct costs accrued at a constant rate, with an estimated annual per-patient cost of C$511 (95% CI C$473, C$551) for diagnostic testing and C$334 (95% CI C$295, C$369) for consultations at C&W. Travel costs and caregiver productivity loss associated with attending diagnosis-related physician appointments averaged C$1907/family/year. CONCLUSIONS: The continuing long-term accrual of costs by undiagnosed patients suggests that economic evaluations of diagnostic GWS services should use longer time horizons than have typically been used.


Assuntos
Doenças Genéticas Inatas/economia , Testes Genéticos/economia , Custos de Cuidados de Saúde/tendências , Adulto , Colúmbia Britânica/epidemiologia , Cuidadores/economia , Cuidadores/psicologia , Estudos de Coortes , Análise Custo-Benefício , Exoma/genética , Feminino , Custos de Cuidados de Saúde/ética , Humanos , Deficiência Intelectual/genética , Masculino , Análise de Sequência de DNA/economia , Sequenciamento do Exoma/economia , Sequenciamento do Exoma/métodos
18.
Am J Med Genet A ; 182(3): 498-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840929

RESUMO

Renpenning syndrome (OMIM: 309500) is a rare X-linked disorder that causes intellectual disability, microcephaly, short stature, a variety of eye anomalies, and characteristic craniofacial features. This condition results from pathogenic variation of PQBP1, a polyglutamine-binding protein involved in transcription and pre-mRNA splicing. Renpenning syndrome has only been reported in affected males. Carrier females do not usually have clinical features, and in reported families with Renpenning syndrome, most female carriers exhibit favorable skewing of X-chromosome inactivation. We describe a female with syndromic features typical of Renpenning syndrome. She was identified by exome sequencing to have a de novo heterozygous c.459_462delAGAG mutation in PQBP1 (Xp11.23), affecting the AG hexamer in exon 4, which is the most common causative mutation in this syndrome. Streaky hypopigmentation of the skin was observed, supporting a hypothesized presence of an actively expressed, PQBP1 mutation-bearing X-chromosome in some cells. X-inactivation studies on peripheral blood cells demonstrated complete skewing in both the proband and her mother with preferential inactivation of the maternal X chromosome in the child. We demonstrated expression of the PQBP1 mutant transcript in leukocytes of the affected girl. Therefore, it is highly likely that the PQBP1 mutation arose from the paternal X chromosome.


Assuntos
Anormalidades Múltiplas/genética , Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/patologia , Criança , Cromossomos Humanos X/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação/genética , Inativação do Cromossomo X/genética
19.
N Engl J Med ; 374(23): 2246-55, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276562

RESUMO

BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).


Assuntos
Exoma , Testes Genéticos/métodos , Erros Inatos do Metabolismo/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Fenótipo , Adulto Jovem
20.
Genet Med ; 21(2): 498-504, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29895853

RESUMO

Diagnostic genome-wide sequencing (exome or genome sequencing and data analysis for high-penetrance disease-causing variants) in acutely ill infants appears to be clinically useful, but the value of this diagnostic test should be rigorously demonstrated before it is accepted as a standard of care. This white paper was developed by the Paediatric Task Team of the Global Alliance for Genomics and Health's Regulatory and Ethics Work Stream to address the question of how we can determine the clinical value of genome-wide sequencing in infants in an intensive care setting. After reviewing available clinical and ethics literature on this question, we conclude that evaluating diagnostic genome-wide sequencing as a comprehensive scan for major genetic disease (rather than as a large panel of single-gene tests) provides a practical approach to assessing its clinical value in acutely ill infants. Comparing the clinical value of diagnostic genome-wide sequencing to chromosomal microarray analysis, the current evidence-based standard of care, per case of serious genetic disease diagnosed provides a practical means of assessing clinical value. Scientifically rigorous studies of this kind are needed to determine if clinical genome-wide sequencing should be established as a standard of care supported by healthcare systems and insurers for diagnosis of genetic disease in seriously ill newborn infants.


Assuntos
Testes Diagnósticos de Rotina , Testes Genéticos , Doenças do Recém-Nascido/genética , Terapia Intensiva Neonatal , Sequenciamento Completo do Genoma , Doença Aguda , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Penetrância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA