Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell Mol Life Sci ; 81(1): 140, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485771

RESUMO

The importance of mechanosensory transduction pathways in cellular signalling has prominently come to focus in the last decade with the discovery of the Piezo ion channel family. Mechanosignaling involving Piezo1 ion channels in the function of the heart and cardiovascular system has only recently been identified to have implications for cardiovascular physiology and pathophysiology, in particular for heart failure (i.e., hypertrophy or dilative cardiomyopathy). These results have emphasized the need for higher throughput methods to study single-cell cardiovascular mechanobiology with the aim of identifying new targets for therapeutic interventions and stimulating the development of new pharmacological agents. Here, we present a novel method to assess mechanosignaling in adherent cardiac cells (murine HL-1 cell line) using a combination of isotropic cell stretch application and simultaneous Ca2+ fluorescence readout with quantitative analysis. The procedure implements our IsoStretcher technology in conjunction with a single-cell- and population-based analysis of Ca2+ signalling by means of automated image registration, cell segmentation and analysis, followed by automated classification of single-cell responses. The method is particularly valuable for assessing the heterogeneity of populations with distinct cellular responses to mechanical stimulation and provides more user-independent unbiased drug response classifications.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Camundongos , Animais , Canais Iônicos/metabolismo , Transdução de Sinais , Coração , Linhagem Celular
2.
Gut ; 73(4): 601-612, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38176897

RESUMO

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Linfócitos Intraepiteliais , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Butiratos , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças
3.
Am J Physiol Cell Physiol ; 326(2): C622-C631, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189136

RESUMO

The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.


Assuntos
Canais Iônicos , Humanos , Cátions/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Canais Iônicos/metabolismo , Cinética , Potenciais da Membrana/fisiologia
4.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892380

RESUMO

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Assuntos
Cálcio , Fibras Musculares de Contração Rápida , Simendana , Simendana/farmacologia , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Contração Muscular/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/efeitos dos fármacos , Masculino , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 117(49): 30980-30987, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229561

RESUMO

Sea-level rise resulting from the instability of polar continental ice sheets represents a major socioeconomic hazard arising from anthropogenic warming, but the response of the largest component of Earth's cryosphere, the East Antarctic Ice Sheet (EAIS), to global warming is poorly understood. Here we present a detailed record of North Atlantic deep-ocean temperature, global sea-level, and ice-volume change for ∼2.75 to 2.4 Ma ago, when atmospheric partial pressure of carbon dioxide (pCO2) ranged from present-day (>400 parts per million volume, ppmv) to preindustrial (<280 ppmv) values. Our data reveal clear glacial-interglacial cycles in global ice volume and sea level largely driven by the growth and decay of ice sheets in the Northern Hemisphere. Yet, sea-level values during Marine Isotope Stage (MIS) 101 (∼2.55 Ma) also signal substantial melting of the EAIS, and peak sea levels during MIS G7 (∼2.75 Ma) and, perhaps, MIS G1 (∼2.63 Ma) are also suggestive of EAIS instability. During the succeeding glacial-interglacial cycles (MIS 100 to 95), sea levels were distinctly lower than before, strongly suggesting a link between greater stability of the EAIS and increased land-ice volumes in the Northern Hemisphere. We propose that lower sea levels driven by ice-sheet growth in the Northern Hemisphere decreased EAIS susceptibility to ocean melting. Our findings have implications for future EAIS vulnerability to a rapidly warming world.

6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769321

RESUMO

The goal of bone tissue engineering is to build artificial bone tissue with properties that closely resemble human bone and thereby support the optimal integration of the constructs (biografts) into the body. The development of tissues in 3D scaffolds includes several complex steps that need to be optimized and monitored. In particular, cell-material interaction during seeding, cell proliferation and cell differentiation within the scaffold pores play a key role. In this work, we seeded two types of 3D-printed scaffolds with pre-osteoblastic MC3T3-E1 cells, proliferated and differentiated the cells, before testing and adapting different assays and imaging methods to monitor these processes. Alpha-TCP/HA (α-TCP with low calcium hydroxyapatite) and baghdadite (Ca3ZrSi2O9) scaffolds were used, which had comparable porosity (~50%) and pore sizes (~300-400 µm). Cell adhesion to both scaffolds showed ~95% seeding efficiency. Cell proliferation tests provided characteristic progression curves over time and increased values for α-TCP/HA. Transmitted light imaging displayed a homogeneous population of scaffold pores and allowed us to track their opening state for the supply of the inner scaffold regions by diffusion. Fluorescence labeling enabled us to image the arrangement and morphology of the cells within the pores. During three weeks of osteogenesis, ALP activity increased sharply in both scaffolds, but was again markedly increased in α-TCP/HA scaffolds. Multiphoton SHG and autofluorescence imaging were used to investigate the distribution, morphology, and arrangement of cells; collagen-I fiber networks; and hydroxyapatite crystals. The collagen-I networks became denser and more structured during osteogenic differentiation and appeared comparable in both scaffolds. However, imaging of the HA crystals showed a different morphology between the two scaffolds and appeared to arrange in the α-TCP/HA scaffolds along collagen-I fibers. ALP activity and SHG imaging indicated a pronounced osteo-inductive effect of baghdadite. This study describes a series of methods, in particular multiphoton imaging and complementary biochemical assays, to validly measure and track the development of bone tissue in 3D scaffolds. The results contribute to the understanding of cell colonization, growth, and differentiation, emphasizing the importance of optimal media supply of the inner scaffold regions.


Assuntos
Osteogênese , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Diferenciação Celular , Engenharia Tecidual/métodos , Durapatita/farmacologia , Durapatita/química , Colágeno/química , Proliferação de Células
7.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373531

RESUMO

Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell-cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Técnicas de Cocultura , Reprodutibilidade dos Testes , Técnicas de Cultura de Células/métodos , Glomérulos Renais
8.
Neuropathol Appl Neurobiol ; 48(3): e12784, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850968

RESUMO

AIMS: Desminopathies comprise hereditary myopathies and cardiomyopathies caused by mutations in the intermediate filament protein desmin that lead to severe and often lethal degeneration of striated muscle tissue. Animal and single cell studies hinted that this degeneration process is associated with massive ultrastructural defects correlating with increased susceptibility of the muscle to acute mechanical stress. The underlying mechanism of mechanical susceptibility, and how muscle degeneration develops over time, however, has remained elusive. METHODS: Here, we investigated the effect of a desmin mutation on the formation, differentiation, and contractile function of in vitro-engineered three-dimensional micro-tissues grown from muscle stem cells (satellite cells) isolated from heterozygous R349P desmin knock-in mice. RESULTS: Micro-tissues grown from desmin-mutated cells exhibited spontaneous unsynchronised contractions, higher contractile forces in response to electrical stimulation, and faster force recovery compared with tissues grown from wild-type cells. Within 1 week of culture, the majority of R349P desmin-mutated tissues disintegrated, whereas wild-type tissues remained intact over at least three weeks. Moreover, under tetanic stimulation lasting less than 5 s, desmin-mutated tissues partially or completely ruptured, whereas wild-type tissues did not display signs of damage. CONCLUSIONS: Our results demonstrate that the progressive degeneration of desmin-mutated micro-tissues is closely linked to extracellular matrix fibre breakage associated with increased contractile forces and unevenly distributed tensile stress. This suggests that the age-related degeneration of skeletal and cardiac muscle in patients suffering from desminopathies may be similarly exacerbated by mechanical damage from high-intensity muscle contractions. We conclude that micro-tissues may provide a valuable tool for studying the organization of myocytes and the pathogenic mechanisms of myopathies.


Assuntos
Cardiomiopatias , Desmina , Músculos , Animais , Cardiomiopatias/genética , Desmina/genética , Humanos , Camundongos , Músculo Esquelético/patologia , Músculos/patologia , Mutação , Células-Tronco/metabolismo , Células-Tronco/patologia
9.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216453

RESUMO

Immune cell activity is a major factor for disease progression in inflammatory bowel diseases (IBD). Classifying the type and functional state of immune cells is therefore crucial in clinical diagnostics of IBD. Label-free optical technologies exploiting NADH and FAD autofluorescence, such as multiphoton microscopy, have been used to describe tissue morphology in healthy and inflamed colon samples. Nevertheless, a strategy for the identification of single immune cell subtypes within the tissue is yet to be developed. This work aims to initiate an understanding of autofluorescence changes depending on immune cell type and activation state. For this, NADH and FAD autofluorescence signals of different murine immune cell subtypes under native conditions, as well as upon in vitro stimulation and cell death, have been evaluated. Autofluorescence was assessed using flow cytometry and multiphoton microscopy. Our results reveal significantly increased NADH and FAD signals in innate immune cells compared to adaptive immune cells. This allowed identification of relative amounts of neutrophils and CD4+ T cells in mixed cell suspensions, by using NADH signals as a differentiation marker. Furthermore, in vitro stimulation significantly increased NADH and FAD autofluorescence in adaptive immune cells and macrophages. Cell death induced a significant drop in NADH autofluorescence, while FAD signals were hardly affected. Taken together, these results demonstrate the value of autofluorescence as a tool to characterize immune cells in different functional states, paving the way to the label-free clinical classification of IBD in the future.


Assuntos
Flavina-Adenina Dinucleotídeo , Doenças Inflamatórias Intestinais , Animais , Biomarcadores , Colo/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Camundongos , NAD/metabolismo
10.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142754

RESUMO

Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mdx mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the Cmah gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of 'structural weakness', intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from extensor digitorum longus (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in mdx Cmah-/- diaphragm was similar to wt mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in mdx Cmah-/- diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in mdx Cmah-/- single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the mdx Cmah-/- genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Colágeno/metabolismo , Diafragma/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
11.
Exp Cell Res ; 395(2): 112210, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750330

RESUMO

Functional imaging of the intracellular calcium concentration [Ca2+]i using fluorescent indicators is a powerful and frequently applied method for assessing various biological questions in vitro, including ion channel function and intracellular signaling in homeostasis and disease. In functional [Ca2+]i imaging experiments, the fluorescence intensity of single cells is typically recorded during application of a chemical stimulus, i.e. by exchange of modified extracellular media, exposure to drugs and/or ligands. The concomitant mechanical perturbation caused by the perfusion of different solution during experimentation severely hinders calcium imaging in non-adherent cells, including peripheral immune cells, as cells in suspension are dislocated by turbulent flow during chemical stimulation. The quantitative analysis, involving time-courses of intracellular fluorescence signal changes, necessitates cells to remain at the same position throughout the experiment. To prevent dislocation of cells during solution exchange, and to enable imaging as well as analysis of Ca2+ responses in immune cells, a gelatin-based method for immobilization of non-adherent cells was developed. Gelatin has been a long-serving material for cell immobilization, e.g. in 3D bio-printing of cells and has thus, also been employed in the context of this study. To demonstrate the applicability of the established method for functional Ca2+ imaging in gelatin-immobilized suspension cells, a proof-of-concept study was conducted using human peripheral blood model cell lines (Jurkat/T-lymphocytes and THP-1/monocytes), Ca2+ indicators (Fluo-4 and Fura-2) and two different fluorescence microscopy rigs. The data presented that the established methodology is applicable for studying Ca2+ signaling by in vitro high-content functional imaging of [Ca2+]i in suspension cells, including but not restricted to human immune cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Citoplasma/metabolismo , Gelatina/metabolismo , Linhagem Celular , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Microscopia de Fluorescência/métodos
12.
Vasa ; 50(6): 446-452, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34279120

RESUMO

Background: Previous observational studies reported a wide variation and possible room for improvement in the treatment of patients suffering from symptomatic peripheral artery disease (PAD). Yet, systematic assessment of everyday clinical practice is lacking. A General Data Protection Regulation (GDPR) compliant registry was developed and used to collect comprehensive data on clinical treatment and outcomes regarding PAD in Germany. Here, we report baseline characteristics of patients prospectively enrolled until the end of 2020. Methods: The GermanVasc registry study is a prospective longitudinal multicentre cohort study. Between 1st May 2018 and 31st December 2020, invasive endovascular, open-surgical, and hybrid revascularisations of patients suffering from chronic symptomatic PAD were prospectively included after explicit informed consent (NCT03098290). For ensuring high quality of the data, we performed comprehensive risk-based and random-sample external and internal validation. Results: In total, 5608 patients from 31 study centres were included (34% females, median 69 years). On-site monitoring visits were performed at least once in all centres. The proportion of chronic limb-threatening ischaemia was 30% and 13% were emergent admissions. 55% exhibited a previous revascularisation. Endovascular techniques made 69% among all documented invasive procedures (n=6449). Thirty-five percent were classified as patients with severe systemic disease, and 3% exhibited a constant threat to life according to the American Society of Anaesthesiologists classification. The risk profile comprised of 75% former or current smokers, 36% diabetes mellitus, and in 30% a current ischemic heart disease was present. At discharge, 93% of the patients received antiplatelets and 77% received statins. Conclusions: The GermanVasc registry study provides insights into real-world practice of treatment and outcomes of 5,608 patients with symptomatic PAD in Germany. The cohort covers a broader range of disease severity and types of interventions than usually found in trials. In future studies, comparative outcomes will be analysed in more detail.


Assuntos
Procedimentos Endovasculares , Doença Arterial Periférica , Estudos de Coortes , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Isquemia , Masculino , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/cirurgia , Estudos Prospectivos , Fatores de Risco , Resultado do Tratamento
13.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916572

RESUMO

Cold atmospheric plasma (CAP) is partially ionized gas near room temperature with previously reported antitumor effects. Despite extensive research and growing interest in this technology, active components and molecular mechanisms of CAP are not fully understood to date. We used Raman spectroscopy and colorimetric assays to determine elevated nitrite and nitrate levels after treatment with a MiniFlatPlaster CAP device. Previously, we demonstrated CAP-induced acidification. Cellular effects of nitrite and strong extracellular acidification were assessed using live-cell imaging of intracellular Ca2+ levels, cell viability analysis as well as quantification of p21 and DNA damage. We further characterized these observations by analyzing established molecular effects of CAP treatment. A synergistic effect of nitrite and acidification was found, leading to strong cytotoxicity in melanoma cells. Interestingly, protein nitration and membrane damage were absent after treatment with acidified nitrite, thereby challenging their contribution to CAP-induced cytotoxicity. Further, phosphorylation of ERK1/2 was increased after treatment with both acidified nitrite and indirect CAP. This study characterizes the impact of acidified nitrite on melanoma cells and supports the importance of RNS during CAP treatment. Further, it defines and evaluates important molecular mechanisms that are involved in the cancer cell response to CAP.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Nitritos/farmacologia , Gases em Plasma/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Melanoma/metabolismo , Melanoma/patologia
14.
J Physiol ; 598(18): 3871-3889, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32648302

RESUMO

KEY POINTS: Physical activity is known to protect against cancer. The resistance exercise method whole-body electromyostimulation (WB-EMS) has a significant anti-cancer effect. WB-EMS-conditioned serum from advanced prostate cancer patients decreased human prostate carcinoma cell growth and viability in vitro. Multiplex analysis revealed that genes associated with human prostate cancer cell proliferation and apoptosis are sensitive for exercise. Feasible exercise should be part of multimodal anti-cancer therapies, also for physically weakened patients. ABSTRACT: Regular physical activity is known to protect against cancer development. In cancer survivors, exercise reduces the risk of cancer recurrence and mortality. However, the link between exercise and decreased cancer risk and improved survival is still not well understood. Serum from exercising healthy individuals inhibits proliferation and activates apoptosis in various cancer cells, suggesting that mechanisms regulating cancer cell growth are affected by exercise. For the first time, we analysed serum from advanced-stage cancer patients with prostate (exercise group n = 8; control group n = 10) or colorectal (exercise n = 6; control n = 6) cancer, after a 12-week whole-body electromyostimulation training (20 min/session, 2×/week; frequency 85 Hz; pulse width 350 µs; 6 s stimulation, 4 s rest), a tolerable, yet effective, resistance exercise for physically weakened patients. We report that serum from these advanced cancer patients inhibits proliferation and enhances apoptosis of human prostate and colon cancer cells in vitro using cell growth and death assays (5-bromo-2'-deoxyuridine incorporation, cell counting, DNA fragmentation). Exercise-mimicking electric pulse stimulation of human primary myotubes showed that electric pulse stimulation-conditioned myotube medium also impairs human cancer cell viability. Gene expression analysis using a multiplex array of cancer-associated genes and subsequent quantitative RT-PCR revealed the presence of exercise-sensitive genes in human prostate cancer cells that potentially participate in the exercise-mediated regulation of malignant cell growth and apoptosis. Our data document the strong efficiency of the anti-oncogenic effects of physical activity and will further support the application of regular therapeutic exercise during cancer disease.


Assuntos
Exercício Físico , Neoplasias da Próstata , Apoptose , Proliferação de Células , Terapia por Exercício , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia
15.
Gastroenterology ; 157(5): 1293-1309, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302143

RESUMO

BACKGROUND & AIMS: It is not clear how regulation of T-cell function is altered during development of inflammatory bowel diseases (IBD). We studied the mechanisms by which geranylgeranyltransferase-mediated prenylation controls T-cell localization to the intestine and chronic inflammation. METHODS: We generated mice with T-cell-specific disruption of the geranylgeranyltransferase type I, beta subunit gene (Pggt1b), called Pggt1bΔCD4 mice, or the ras homolog family member A gene (Rhoa), called RhoaΔCD4 mice. We also studied mice with knockout of CDC42 or RAC1 and wild-type mice (controls). Intestinal tissues were analyzed by histology, multiphoton and confocal microscopy, and real-time polymerase chain reaction. Activation of CDC42, RAC1, and RHOA were measured with G-LISA, cell fractionation, and immunoblots. T cells and lamina propria mononuclear cells from mice were analyzed by flow cytometry or transferred to Rag1-/- mice. Mice were given injections of antibodies against integrin alpha4beta7 or gavaged with the RORC antagonist GSK805. We obtained peripheral blood and intestinal tissue samples from patients with and without IBD and analyzed them by flow cytometry. RESULTS: Pggt1bΔCD4 mice developed spontaneous colitis, characterized by thickening of the intestinal wall, edema, fibrosis, accumulation of T cells in the colon, and increased expression of inflammatory cytokines. Compared with control CD4+ T cells, PGGT1B-deficient CD4+ T cells expressed significantly higher levels of integrin alpha4beta7, which regulates their localization to the intestine. Inflammation induced by transfer of PGGT1B-deficient CD4+ T cells to Rag1-/- mice was blocked by injection of an antibody against integrin alpha4beta7. Lamina propria of Pggt1bΔCD4 mice had increased numbers of CD4+ T cells that expressed RORC and higher levels of cytokines produced by T-helper 17 cells (granulocyte-macrophage colony-stimulating factor, interleukin [IL]17A, IL17F, IL22, and tumor necrosis factor [TNF]). The RORC inverse agonist GSK805, but not antibodies against IL17A or IL17F, prevented colitis in Pggt1bΔCD4 mice. PGGT1B-deficient CD4+ T cells had decreased activation of RHOA. RhoAΔCD4 mice had a similar phenotype to Pggt1bΔCD4 mice, including development of colitis, increased numbers of CD4+ T cells in colon, increased expression of integrin alpha4beta7 by CD4+ T cells, and increased levels of IL17A and other inflammatory cytokines in lamina propria. T cells isolated from intestinal tissues from patients with IBD had significantly lower levels of PGGT1B than tissues from individuals without IBD. CONCLUSION: Loss of PGGT1B from T cells in mice impairs RHOA function, increasing CD4+ T-cell expression of integrin alpha4beta7 and localization to colon, resulting in increased expression of inflammatory cytokines and colitis. T cells isolated from gut tissues from patients with IBD have lower levels of PGGT1B than tissues from patients without IBD.


Assuntos
Alquil e Aril Transferases/deficiência , Quimiotaxia de Leucócito , Colite/enzimologia , Colo/enzimologia , Integrinas/metabolismo , Linfócitos T/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Imunidade Adaptativa , Alquil e Aril Transferases/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
16.
Gastroenterology ; 156(4): 1082-1097.e11, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452921

RESUMO

BACKGROUND & AIMS: Intestinal fibrosis is a long-term complication in inflammatory bowel diseases (IBD) that frequently results in functional damage, bowel obstruction, and surgery. Interleukin (IL) 36 is a group of cytokines in the IL1 family with inflammatory effects. We studied the expression of IL36 and its receptor, interleukin 1 receptor like 2 (IL1RL2 or IL36R) in the development of intestinal fibrosis in human tissues and mice. METHODS: We obtained intestinal tissues from 92 patients with Crohn's disease (CD), 48 patients with ulcerative colitis, and 26 patients without inflammatory bowel diseases (control individuals). Tissues were analyzed by histology to detect fibrosis and by immunohistochemistry to determine the distribution of fibroblasts and levels of IL36R ligands. Human and mouse fibroblasts were incubated with IL36 or control medium, and transcriptome-wide RNA sequences were analyzed. Mice were given neutralizing antibodies against IL36R, and we studied intestinal tissues from Il1rl2-/- mice; colitis and fibrosis were induced in mice by repetitive administration of DSS or TNBS. Bone marrow cells were transplanted from Il1rl2-/- to irradiated wild-type mice and intestinal tissues were analyzed. Antibodies against IL36R were applied to mice with established chronic colitis and fibrosis and intestinal tissues were studied. RESULTS: Mucosal and submucosal tissue from patients with CD or ulcerative colitis had higher levels of collagens, including type VI collagen, compared with tissue from control individuals. In tissues from patients with fibrostenotic CD, significantly higher levels of IL36A were noted, which correlated with high numbers of activated fibroblasts that expressed α-smooth muscle actin. IL36R activation of mouse and human fibroblasts resulted in expression of genes that regulate fibrosis and tissue remodeling, as well as expression of collagen type VI. Il1rl2-/- mice and mice given injections of an antibody against IL36R developed less severe colitis and fibrosis after administration of DSS or TNBS, but bone marrow cells from Il1rl2-/- mice did not prevent induction of colitis and fibrosis. Injection of antibodies against IL36R significantly reduced established fibrosis in mice with chronic intestinal inflammation. CONCLUSION: We found higher levels of IL36A in fibrotic intestinal tissues from patients with IBD compared with control individuals. IL36 induced expression of genes that regulate fibrogenesis in fibroblasts. Inhibition or knockout of the IL36R gene in mice reduces chronic colitis and intestinal fibrosis. Agents designed to block IL36R signaling could be developed for prevention and treatment of intestinal fibrosis in patients with IBD.


Assuntos
Colite Ulcerativa/metabolismo , Colágeno Tipo VI/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Interleucina-1/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Receptores de Interleucina-1/metabolismo , Actinas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Sulfato de Dextrana , Fibroblastos/efeitos dos fármacos , Fibrose , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Interleucina-1/farmacologia , Ligantes , Camundongos , Camundongos Knockout , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/genética , Transdução de Sinais , Transcriptoma , Ácido Trinitrobenzenossulfônico
17.
J Mater Sci Mater Med ; 31(2): 23, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016560

RESUMO

Capsular contracture remains a challenge in plastic surgery and represents one of the most common postoperative complications following alloplastic breast reconstruction. The impact of the surface structure of silicone implants on the foreign body reaction and the behaviour of connective tissue-producing cells has already been discussed. The aim of this study was to investigate different pore sizes of silicone surfaces and their influence on human fibroblasts in an in vitro model. Four different textures (no, fine, medium and coarse texture) produced with the salt-loss technique, have been assessed in an in vitro model. Human fibroblasts were seeded onto silicone sheets and evaluated after 1, 4 and 7 days microscopically, with viability assay and gene expression analysis. Comparing the growth behaviour and adhesion of the fibroblasts on the four different textures, a dense cell layer, good adhesion and bridge-building ability of the cells could be observed for the fine and medium texture. Cell number and viability of the cells were increasing during the time course of experiments on every texture. TGFß1 was lowest expressed on the fine and medium texture indicating a trend for decreased fibrotic activity. For silicone surfaces produced with the salt-loss technique, we were able to show an antifibrotic effect of smaller sized pores. These findings underline the hypothesis of a key role of the implant surface and the pore size and pore structure in preventing capsular contracture.


Assuntos
Materiais Biocompatíveis , Fibroblastos/fisiologia , Teste de Materiais , Silicones/química , Propriedades de Superfície , Técnicas de Cultura de Células , Humanos
18.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752098

RESUMO

Muscle biomechanics relies on active motor protein assembly and passive strain transmission through cytoskeletal structures. The desmin filament network aligns myofibrils at the z-discs, provides nuclear-sarcolemmal anchorage and may also serve as memory for muscle repositioning following large strains. Our previous analyses of R349P desmin knock-in mice, an animal model for the human R350P desminopathy, already depicted pre-clinical changes in myofibrillar arrangement and increased fiber bundle stiffness. As the effect of R349P desmin on axial biomechanics in fully differentiated single muscle fibers is unknown, we used our MyoRobot to compare passive visco-elasticity and active contractile biomechanics in single fibers from fast- and slow-twitch muscles from adult to senile mice, hetero- or homozygous for the R349P desmin mutation with wild type littermates. We demonstrate that R349P desmin presence predominantly increased axial stiffness in both muscle types with a pre-aged phenotype over wild type fibers. Axial viscosity and Ca2+-mediated force were largely unaffected. Mutant single fibers showed tendencies towards faster unloaded shortening over wild type fibers. Effects of aging seen in the wild type appeared earlier in the mutant desmin fibers. Our single-fiber experiments, free of extracellular matrix, suggest that compromised muscle biomechanics is not exclusively attributed to fibrosis but also originates from an impaired intermediate filament network.


Assuntos
Envelhecimento/genética , Desmina/genética , Fibras Musculares Esqueléticas/química , Miofibrilas/genética , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Citoesqueleto/química , Citoesqueleto/genética , Desmina/química , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/genética , Camundongos , Contração Muscular/genética , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Mutação/genética , Miofibrilas/química
19.
Bioorg Med Chem ; 27(1): 110-115, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503412

RESUMO

Severe malaria and viral infections cause life-threatening diseases in millions of people worldwide every year. In search for effective bioactive hybrid molecules, which may possess improved properties compared to their parent compounds, a series of betulinic acid/betulin based dimer and hybrid compounds carrying ferrocene and/or artesunic acid moieties, was designed and, synthesized de novo. Furthermore, they were analyzed in vitro against malaria parasites (growth inhibition of 3D7-strain P. falciparum-infected erythrocytes) and human cytomegalovirus (HCMV). From this series of hybrids/dimers, the betulinic acid/betulin and artesunic acid hybrids 11 and 12 showed the most potent activities against P. falciparum and HCMV. On the strength of results, additive and/or synergistic effects between the natural or semisynthetic products, such as betulinic acid-/betulin- and artesunic acid-derived compounds, are suggested on the basis of putatively complex modes of antimicrobial action. This advantage may be taken into account in future drug development.


Assuntos
Antimaláricos/farmacologia , Antivirais/farmacologia , Artemisininas/farmacologia , Compostos Ferrosos/farmacologia , Triterpenos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antivirais/síntese química , Antivirais/química , Artemisininas/síntese química , Artemisininas/química , Citomegalovirus/efeitos dos fármacos , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Fibroblastos/virologia , Humanos , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Triterpenos/síntese química , Triterpenos/química
20.
Angew Chem Int Ed Engl ; 58(37): 13066-13079, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31290221

RESUMO

A substantial challenge worldwide is emergent drug resistance in malaria parasites against approved drugs, such as chloroquine (CQ). To address these unsolved CQ resistance issues, only rare examples of artemisinin (ART)-based hybrids have been reported. Moreover, protein targets of such hybrids have not been identified yet, and the reason for the superior efficacy of these hybrids is still not known. Herein, we report the synthesis of novel ART-isoquinoline and ART-quinoline hybrids showing highly improved potencies against CQ-resistant and multidrug-resistant P. falciparum strains (EC50 (Dd2) down to 1.0 nm; EC50 (K1) down to 0.78 nm) compared to CQ (EC50 (Dd2)=165.3 nm; EC50 (K1)=302.8 nm) and strongly suppressing parasitemia in experimental malaria. These new compounds are easily accessible by step-economic C-H activation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. Through chemical proteomics, putatively hybrid-binding protein targets of the ART-quinolines were successfully identified in addition to known targets of quinoline and artemisinin alone, suggesting that the hybrids act through multiple modes of action to overcome resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Isoquinolinas/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/uso terapêutico , Artemisininas/síntese química , Artemisininas/química , Artemisininas/uso terapêutico , Química Click , Resistência a Múltiplos Medicamentos , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA