Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 222(3): 1325-1337, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30671951

RESUMO

Mutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem. We tested whether partners have symmetrical ('fair') or asymmetrical ('unfair') bargaining power in a legume-rhizobia nitrogen-fixing symbiosis using measurements of carbon and nitrogen dynamics in a mathematical modeling framework derived from economic theory. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate that the growth benefit to the plant (Medicago truncatula) has greater weight in determining trade dynamics than the benefit to the bacteria. Quantitative estimates of the relative power of the plant revealed that the plant's influence rises as soil nitrogen availability decreases and trade benefits to both partners increase. Our finding that M. truncatula legumes have more bargaining power than their rhizobial partner at lower nitrogen availabilities highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient deposition.


Assuntos
Medicago truncatula/microbiologia , Modelos Biológicos , Plantas/metabolismo , Rhizobium/fisiologia , Carbono/metabolismo , Nitrogênio/metabolismo , Solo , Simbiose
2.
Ecol Lett ; 20(9): 1203-1215, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28743172

RESUMO

Nutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and ecosystems. Although much is known about these interactions, comprehensive answers to fundamental questions, such as how resource availability and structured interactions influence mutualism persistence, are still lacking. Mathematical modelling of nutritional mutualisms has great potential to facilitate the search for comprehensive answers to these and other fundamental questions by connecting the physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes. In particular, when integrated with empirical data, models enable understanding of underlying mechanisms and generalisation of principles beyond the particulars of a given system. Here, we demonstrate how mathematical models can be integrated with data to address questions of mutualism persistence at four biological scales: cell, individual, population, and community. We highlight select studies where data has been or could be integrated with models to either inform model structure or test model predictions. We also point out opportunities to increase model rigour through tighter integration with data, and describe areas in which data is urgently needed. We focus on plant-microbe systems, for which a wealth of empirical data is available, but the principles and approaches can be generally applied to any nutritional mutualism.


Assuntos
Evolução Biológica , Simbiose , Ecologia , Ecossistema , Modelos Biológicos , Plantas
3.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38077020

RESUMO

The influence of lanthanide biochemistry during methylotrophy demands a reassessment of how the composition and metabolic potential of methylotrophic phyllosphere communities are affected by the presence of these metals. To investigate this, methylotrophs were isolated from soybean leaves by selecting for bacteria capable of methanol oxidation with lanthanide cofactors. Of the 344 pink-pigmented facultative methylotroph isolates, none were obligately lanthanide-dependent. Phylogenetic analyses revealed that all strains were nearly identical to each other and to model strains from the extorquens clade of Methylobacterium, with rpoB providing higher resolution than 16s rRNA for strain-specific identification. Despite the low species diversity, the metabolic capabilities of the community diverged greatly. Strains encoding identical PQQ-dependent alcohol dehydrogenases displayed significantly different growth from each other on alcohols in the presence and absence of lanthanides. Several strains also lacked well-characterized lanthanide-associated genes thought to be important for phyllosphere colonization. Additionally, 3% of our isolates were capable of growth on sugars and 23% were capable of growth on aromatic acids, substantially expanding the range of multicarbon substrates utilized by members of the extorquens clade in the phyllosphere. Whole genome sequences of eleven novel strains are reported. Our findings suggest that the expansion of metabolic capabilities, as well as differential usage of lanthanides and their influence on metabolism among closely related strains, point to evolution of niche partitioning strategies to promote colonization of the phyllosphere.

4.
Front Plant Sci ; 10: 1316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749816

RESUMO

The costs and benefits that define gain from trade in resource mutualisms depend on resource availability. Optimal partitioning theory predicts that allocation to direct uptake versus trade will be determined by both the relative benefit of the resource acquired through trade and the relative cost of the resource being traded away. While the costs and benefits of carbon:nitrogen exchange in the legume-rhizobia symbiosis have been examined in depth with regards to mineral nitrogen availability, the effects of varying carbon costs are rarely considered. Using a growth chamber experiment, we measured plant growth and symbiosis investment in the model legume Medicago truncatula and its symbiont Ensifer medicae across varying nitrogen and light environments. We demonstrate that plants modulate their allocation to roots and nodules as their return on investment varies according to external nitrogen and carbon availabilities. We find empirical evidence that plant allocation to nodules responds to carbon availability, but that this depends upon the nitrogen environment. In particular, at low nitrogen-where rhizobia provided the majority of nitrogen for plant growth-relative nodule allocation increased when carbon limitation was alleviated with high light levels. Legumes' context-dependent modulation of resource allocation to rhizobia thus prevents this interaction from becoming parasitic even in low-light, high-nitrogen environments where carbon is costly and nitrogen is readily available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA