Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(3): 596-608, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453466

RESUMO

Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans.


Assuntos
Alphainfluenzavirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Epitopos/imunologia , Furões , Humanos , Vacinas contra Influenza , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Conformação Proteica
2.
Eur J Immunol ; : e2451045, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031535

RESUMO

Efficient identification of human monoclonal antibodies targeting specific antigenic sites is pivotal for advancing vaccines and immunotherapies against infectious diseases and cancer. Existing screening techniques, however, limit our ability to discover monoclonal antibodies with desired specificity. In this study, we introduce a novel method, blocking of binding (BoB) enzyme-linked immunoassay (ELISA), enabling the detection of high-avidity human antibodies directed to defined epitopes. Leveraging BoB-ELISA, we analyzed the antibody response to known epitopes of influenza A hemagglutinin (HA) in the serum of vaccinated donors. Our findings revealed that serum antibodies targeting head epitopes were immunodominant, whereas antibodies against the stem epitope, although subdominant, were highly prevalent. Extending our analysis across multiple HA strains, we examined the cross-reactive antibody response targeting the stem epitope. Importantly, employing BoB-ELISA we identified donors harboring potent heterosubtypic antibodies targeting the HA stem. B-cell clonal analysis of these donors revealed three novel, genealogically independent monoclonal antibodies with broad cross-reactivity to multiple HAs. In summary, we demonstrated that BoB-ELISA is a sensitive technique for measuring B-cell epitope immunogenicity, enabling the identification of novel monoclonal antibodies with implications for enhanced vaccine development and immunotherapies.

3.
Cell Rep ; 32(9): 108088, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877670

RESUMO

Multidonor antibodies are of interest for vaccine design because they can in principle be elicited in the general population by a common set of immunogens. For influenza, multidonor antibodies have been observed against the hemagglutinin (HA) stem, but not the immunodominant HA head. Here, we identify and characterize a multidonor antibody class (LPAF-a class) targeting the HA head. This class exhibits potent viral entry inhibition against H1N1 A/California/04/2009 (CA09) virus. LPAF-a class antibodies derive from the HV2-70 gene and contain a "Tyr-Gly-Asp"-motif, which occludes the HA-sialic acid binding site as revealed by a co-crystal structure with HA. Both germline-reverted and mature LPAF antibodies potently neutralize CA09 virus and have nanomolar affinities for CA09 HA. Moreover, increased frequencies for LPFA-a class antibodies are observed in humans after a single vaccination. Overall, this work highlights the identification of a multidonor class of head-directed influenza-neutralizing antibodies and delineates the mechanism of their recurrent elicitation in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Influenza Humana/virologia , Humanos , Estrutura Molecular
4.
Oncoimmunology ; 5(7): e1195535, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622049

RESUMO

The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA