Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
J Infect Dis ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950884

RESUMO

BACKGROUND: Annual influenza vaccination is recommended for older adults but repeated vaccination with standard-dose influenza vaccine has been linked to reduced immunogenicity and effectiveness, especially against A(H3N2) viruses. METHODS: Community-dwelling Hong Kong adults aged 65-82 years were randomly allocated to receive 2017/18 standard-dose quadrivalent, MF59-adjuvanted trivalent, high-dose trivalent, and recombinant-HA quadrivalent vaccination. Antibody response to unchanged A(H3N2) vaccine antigen was compared among participants with and without self-reported prior year (2016/17) standard-dose vaccination. RESULTS: Mean fold rise (MFR) in antibody titers from Day 0 to Day 30 by hemagglutination inhibition and virus microneutralization assays were lower among 2017/18 standard-dose and enhanced vaccine recipients with (range, 1.7-3.0) vs. without (range, 4.3-14.3) prior 2016/17 vaccination. MFR was significantly reduced by about one half to four fifths for previously vaccinated recipients of standard-dose and all three enhanced vaccines (ß range, 0.21-0.48). Among prior-year vaccinated older adults, enhanced vaccines induced higher 1.43 to 2.39-fold geometric mean titers and 1.28 to 1.74-fold MFR vs. standard-dose vaccine by microneutralization assay. CONCLUSIONS: In the context of unchanged A(H3N2) vaccine strain, prior-year vaccination was associated with reduced antibody response among both standard-dose and enhanced influenza vaccine recipients. Enhanced vaccines improved antibody response among older adults with prior-year standard-dose vaccination.

2.
Clin Infect Dis ; 76(3): e1168-e1176, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031405

RESUMO

BACKGROUND: Antibody responses to non-egg-based standard-dose cell-culture influenza vaccine (containing 15 µg hemagglutinin [HA]/component) and recombinant vaccine (containing 45 µg HA/component) during consecutive seasons have not been studied in the United States. METHODS: In a randomized trial of immunogenicity of quadrivalent influenza vaccines among healthcare personnel (HCP) aged 18-64 years over 2 consecutive seasons, HCP who received recombinant-HA influenza vaccine (RIV) or cell culture-based inactivated influenza vaccine (ccIIV) during the first season (year 1) were re-randomized the second season of 2019-2020 (year 2 [Y2]) to receive ccIIV or RIV, resulting in 4 ccIIV/RIV combinations. In Y2, hemagglutination inhibition antibody titers against reference cell-grown vaccine viruses were compared in each ccIIV/RIV group with titers among HCP randomized both seasons to receive egg-based, standard-dose inactivated influenza vaccine (IIV) using geometric mean titer (GMT) ratios of Y2 post-vaccination titers. RESULTS: Y2 data from 414 HCP were analyzed per protocol. Compared with 60 IIV/IIV recipients, 74 RIV/RIV and 106 ccIIV/RIV recipients showed significantly elevated GMT ratios (Bonferroni corrected P < .007) against all components except A(H3N2). Post-vaccination GMT ratios for ccIIV/ccIIV and RIV/ccIIV were not significantly elevated compared with IIV/IIV except for RIV/ccIIV against A(H1N1)pdm09. CONCLUSIONS: In adult HCP, receipt of RIV in 2 consecutive seasons or the second season was more immunogenic than consecutive egg-based IIV for 3 of the 4 components of quadrivalent vaccine. Immunogenicity of ccIIV/ccIIV was similar to that of IIV/IIV. Differences in HA antigen content may play a role in immunogenicity of influenza vaccination in consecutive seasons. CLINICAL TRIALS REGISTRATION: NCT03722589.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacina Antivariólica , Adulto , Humanos , Anticorpos Antivirais , Técnicas de Cultura de Células , Atenção à Saúde , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H3N2 , Estados Unidos , Vacinação , Vacinas Combinadas , Vacinas de Produtos Inativados , Vacinas Sintéticas
3.
MMWR Recomm Rep ; 71(1): 1-28, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36006864

RESUMO

THIS REPORT UPDATES THE 2021-22 RECOMMENDATIONS OF THE ADVISORY COMMITTEE ON IMMUNIZATION PRACTICES (ACIP) CONCERNING THE USE OF SEASONAL INFLUENZA VACCINES IN THE UNITED STATES: (MMWR Recomm Rep 2021;70[No. RR-5]:1-24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. With the exception of vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. All seasonal influenza vaccines expected to be available in the United States for the 2022-23 season are quadrivalent, containing hemagglutinin (HA) derived from one influenza A(H1N1)pdm09 virus, one influenza A(H3N2) virus, one influenza B/Victoria lineage virus, and one influenza B/Yamagata lineage virus. Inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Trivalent influenza vaccines are no longer available, but data that involve these vaccines are included for reference. INFLUENZA VACCINES MIGHT BE AVAILABLE AS EARLY AS JULY OR AUGUST, BUT FOR MOST PERSONS WHO NEED ONLY 1 DOSE OF INFLUENZA VACCINE FOR THE SEASON, VACCINATION SHOULD IDEALLY BE OFFERED DURING SEPTEMBER OR OCTOBER. HOWEVER, VACCINATION SHOULD CONTINUE AFTER OCTOBER AND THROUGHOUT THE SEASON AS LONG AS INFLUENZA VIRUSES ARE CIRCULATING AND UNEXPIRED VACCINE IS AVAILABLE. FOR MOST ADULTS (PARTICULARLY ADULTS AGED ≥65 YEARS) AND FOR PREGNANT PERSONS IN THE FIRST OR SECOND TRIMESTER, VACCINATION DURING JULY AND AUGUST SHOULD BE AVOIDED UNLESS THERE IS CONCERN THAT VACCINATION LATER IN THE SEASON MIGHT NOT BE POSSIBLE. CERTAIN CHILDREN AGED 6 MONTHS THROUGH 8 YEARS NEED 2 DOSES; THESE CHILDREN SHOULD RECEIVE THE FIRST DOSE AS SOON AS POSSIBLE AFTER VACCINE IS AVAILABLE, INCLUDING DURING JULY AND AUGUST. VACCINATION DURING JULY AND AUGUST CAN BE CONSIDERED FOR CHILDREN OF ANY AGE WHO NEED ONLY 1 DOSE FOR THE SEASON AND FOR PREGNANT PERSONS WHO ARE IN THE THIRD TRIMESTER IF VACCINE IS AVAILABLE DURING THOSE MONTHS: UPDATES DESCRIBED IN THIS REPORT REFLECT DISCUSSIONS DURING PUBLIC MEETINGS OF ACIP THAT WERE HELD ON OCTOBER 20, 2021; JANUARY 12, 2022; FEBRUARY 23, 2022; AND JUNE 22, 2022. PRIMARY UPDATES TO THIS REPORT INCLUDE THE FOLLOWING THREE TOPICS: 1) THE COMPOSITION OF 2022-23 U.S. SEASONAL INFLUENZA VACCINES; 2) UPDATES TO THE DESCRIPTION OF INFLUENZA VACCINES EXPECTED TO BE AVAILABLE FOR THE 2022-23 SEASON, INCLUDING ONE INFLUENZA VACCINE LABELING CHANGE THAT OCCURRED AFTER THE PUBLICATION OF THE 2021-22 ACIP INFLUENZA RECOMMENDATIONS; AND 3) UPDATES TO THE RECOMMENDATIONS CONCERNING VACCINATION OF ADULTS AGED ≥65 YEARS. FIRST, THE COMPOSITION OF 2022-23 U.S. INFLUENZA VACCINES INCLUDES UPDATES TO THE INFLUENZA A(H3N2) AND INFLUENZA B/VICTORIA LINEAGE COMPONENTS. U.S.-LICENSED INFLUENZA VACCINES WILL CONTAIN HA DERIVED FROM AN INFLUENZA A/VICTORIA/2570/2019 (H1N1)PDM09-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/WISCONSIN/588/2019 (H1N1)PDM09-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA A/DARWIN/9/2021 (H3N2)-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/DARWIN/6/2021 (H3N2)-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA B/AUSTRIA/1359417/2021 (VICTORIA LINEAGE)-LIKE VIRUS; AND AN INFLUENZA B/PHUKET/3073/2013 (YAMAGATA LINEAGE)-LIKE VIRUS. SECOND, THE APPROVED AGE INDICATION FOR THE CELL CULTURE-BASED INACTIVATED INFLUENZA VACCINE, FLUCELVAX QUADRIVALENT (CCIIV4), WAS CHANGED IN OCTOBER 2021 FROM ≥2 YEARS TO ≥6 MONTHS. THIRD, RECOMMENDATIONS FOR VACCINATION OF ADULTS AGED ≥65 YEARS HAVE BEEN MODIFIED. ACIP RECOMMENDS THAT ADULTS AGED ≥65 YEARS PREFERENTIALLY RECEIVE ANY ONE OF THE FOLLOWING HIGHER DOSE OR ADJUVANTED INFLUENZA VACCINES: QUADRIVALENT HIGH-DOSE INACTIVATED INFLUENZA VACCINE (HD-IIV4), QUADRIVALENT RECOMBINANT INFLUENZA VACCINE (RIV4), OR QUADRIVALENT ADJUVANTED INACTIVATED INFLUENZA VACCINE (AIIV4). IF NONE OF THESE THREE VACCINES IS AVAILABLE AT AN OPPORTUNITY FOR VACCINE ADMINISTRATION, THEN ANY OTHER AGE-APPROPRIATE INFLUENZA VACCINE SHOULD BE USED: THIS REPORT FOCUSES ON RECOMMENDATIONS FOR THE USE OF VACCINES FOR THE PREVENTION AND CONTROL OF SEASONAL INFLUENZA DURING THE 2022-23 INFLUENZA SEASON IN THE UNITED STATES. A BRIEF SUMMARY OF THE RECOMMENDATIONS AND A LINK TO THE MOST RECENT BACKGROUND DOCUMENT CONTAINING ADDITIONAL INFORMATION ARE AVAILABLE AT: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Comitês Consultivos , Criança , Feminino , Humanos , Esquemas de Imunização , Lactente , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Gravidez , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas/uso terapêutico , Vacinas de Produtos Inativados/uso terapêutico
4.
Emerg Infect Dis ; 28(13): S26-S33, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36502434

RESUMO

A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.


Assuntos
COVID-19 , Influenza Humana , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , SARS-CoV-2 , Organização Mundial da Saúde
5.
MMWR Recomm Rep ; 70(5): 1-28, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448800

RESUMO

This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.


Assuntos
Imunização/normas , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Guias de Prática Clínica como Assunto , Adolescente , Adulto , Comitês Consultivos , Idoso , COVID-19/epidemiologia , Centers for Disease Control and Prevention, U.S. , Criança , Pré-Escolar , Feminino , Humanos , Esquemas de Imunização , Lactente , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Gravidez , Estações do Ano , Estados Unidos/epidemiologia , Adulto Jovem
6.
Bull World Health Organ ; 100(6): 366-374, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694628

RESUMO

Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , COVID-19/epidemiologia , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Vigilância da População , Estados Unidos/epidemiologia
7.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271561

RESUMO

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/imunologia , Pessoa de Meia-Idade , Vigilância da População , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
8.
MMWR Morb Mortal Wkly Rep ; 71(29): 913-919, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862284

RESUMO

Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vigilância da População , SARS-CoV-2 , Estações do Ano , Estados Unidos/epidemiologia
9.
Ann Intern Med ; 174(10): 1409-1419, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34370517

RESUMO

BACKGROUND: The COVID-19 pandemic has caused substantial morbidity and mortality. OBJECTIVE: To describe monthly clinical trends among adults hospitalized with COVID-19. DESIGN: Pooled cross-sectional study. SETTING: 99 counties in 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET). PATIENTS: U.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during 1 March to 31 December 2020. MEASUREMENTS: Monthly hospitalizations, intensive care unit (ICU) admissions, and in-hospital death rates per 100 000 persons in the population; monthly trends in weighted percentages of interventions, including ICU admission, mechanical ventilation, and vasopressor use, among an age- and site-stratified random sample of hospitalized case patients. RESULTS: Among 116 743 hospitalized adults with COVID-19, the median age was 62 years, 50.7% were male, and 40.8% were non-Hispanic White. Monthly rates of hospitalization (105.3 per 100 000 persons), ICU admission (20.2 per 100 000 persons), and death (11.7 per 100 000 persons) peaked during December 2020. Rates of all 3 outcomes were highest among adults aged 65 years or older, males, and Hispanic or non-Hispanic Black persons. Among 18 508 sampled hospitalized adults, use of remdesivir and systemic corticosteroids increased from 1.7% and 18.9%, respectively, in March to 53.8% and 74.2%, respectively, in December. Frequency of ICU admission, mechanical ventilation, and vasopressor use decreased from March (37.8%, 27.8%, and 22.7%, respectively) to December (20.5%, 12.3%, and 12.8%, respectively); use of noninvasive respiratory support increased from March to December. LIMITATION: COVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country. CONCLUSION: Rates of COVID-19-associated hospitalization, ICU admission, and death were highest in December 2020, corresponding with the third peak of the U.S. pandemic. The frequency of intensive interventions for management of hospitalized patients decreased over time. These data provide a longitudinal assessment of clinical trends among adults hospitalized with COVID-19 before widespread implementation of COVID-19 vaccines. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.


Assuntos
COVID-19/terapia , Hospitalização/tendências , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Adolescente , Corticosteroides/uso terapêutico , Adulto , Distribuição por Idade , Idoso , Alanina/análogos & derivados , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19/etnologia , COVID-19/mortalidade , Cuidados Críticos/tendências , Estudos Transversais , Feminino , Humanos , Unidades de Terapia Intensiva/tendências , Tempo de Internação/tendências , Masculino , Pessoa de Meia-Idade , Pandemias , Respiração Artificial/tendências , SARS-CoV-2 , Estados Unidos/epidemiologia , Vasoconstritores/uso terapêutico , Adulto Jovem
10.
J Infect Dis ; 224(5): 771-776, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693830

RESUMO

We aimed to characterize presence of culturable virus in clinical specimens during acute illness, and antibody kinetics up to 6 months after symptom onset, among 14 early patients with coronavirus disease 2019 in the United States. We isolated viable severe acute respiratory syndrome coronavirus 2 from real-time reverse-transcription polymerase chain reaction-positive respiratory specimens collected during days 0-8 after onset, but not after. All 13 patients with 2 or more serum specimens developed anti-spike antibodies; 12 developed detectable neutralizing antibodies. We did not isolate virus after detection of neutralizing antibodies. Eight participants provided serum at 6 months after onset; all retained detectable anti-spike immunoglobulin G, and half had detectable neutralizing antibodies. Two participants reported not feeling fully recovered at 6 months.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , Soroconversão/fisiologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/virologia , Seguimentos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Estados Unidos
11.
Clin Infect Dis ; 72(7): 1147-1157, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32006430

RESUMO

BACKGROUND: Since 2013, quadrivalent influenza vaccines containing 2 B viruses gradually replaced trivalent vaccines in the United States. We compared the vaccine effectiveness of quadrivalent to trivalent inactivated vaccines (IIV4 to IIV3, respectively) against illness due to influenza B during the transition, when IIV4 use increased rapidly. METHODS: The US Influenza Vaccine Effectiveness (Flu VE) Network analyzed 25 019 of 42 600 outpatients aged ≥6 months who enrolled within 7 days of illness onset during 6 seasons from 2011-2012. Upper respiratory specimens were tested for the influenza virus type and B lineage. Using logistic regression, we estimated IIV4 or IIV3 effectiveness by comparing the odds of an influenza B infection overall and the odds of B lineage among vaccinated versus unvaccinated participants. Over 4 seasons from 2013-2014, we compared the relative odds of an influenza B infection among IIV4 versus IIV3 recipients. RESULTS: Trivalent vaccines included the predominantly circulating B lineage in 4 of 6 seasons. During 4 influenza seasons when both IIV4 and IIV3 were widely used, the overall effectiveness against any influenza B was 53% (95% confidence interval [CI], 45-59) for IIV4 versus 45% (95% CI, 34-54) for IIV3. IIV4 was more effective than IIV3 against the B lineage not included in IIV3, but comparative effectiveness against illnesses related to any influenza B favored neither vaccine valency. CONCLUSIONS: The uptake of quadrivalent inactivated influenza vaccines was not associated with increased protection against any influenza B illness, despite the higher effectiveness of quadrivalent vaccines against the added B virus lineage. Public health impact and cost-benefit analyses are needed globally.


Assuntos
Vacinas contra Influenza , Influenza Humana , Idoso , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas , Vacinas de Produtos Inativados
12.
Clin Infect Dis ; 73(10): 1831-1839, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33639620

RESUMO

BACKGROUND: Monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody prevalence can complement case reporting to inform more accurate estimates of SARS-CoV-2 infection burden, but few studies have undertaken repeated sampling over time on a broad geographic scale. METHODS: We performed serologic testing on a convenience sample of residual serum obtained from persons of all ages, at 10 sites in the United States from 23 March through 14 August 2020, from routine clinical testing at commercial laboratories. We standardized our seroprevalence rates by age and sex, using census population projections and adjusted for laboratory assay performance. Confidence intervals were generated with a 2-stage bootstrap. We used bayesian modeling to test whether seroprevalence changes over time were statistically significant. RESULTS: Seroprevalence remained below 10% at all sites except New York and Florida, where it reached 23.2% and 13.3%, respectively. Statistically significant increases in seroprevalence followed peaks in reported cases in New York, South Florida, Utah, Missouri, and Louisiana. In the absence of such peaks, some significant decreases were observed over time in New York, Missouri, Utah, and Western Washington. The estimated cumulative number of infections with detectable antibody response continued to exceed reported cases in all sites. CONCLUSIONS: Estimated seroprevalence was low in most sites, indicating that most people in the United States had not been infected with SARS-CoV-2 as of July 2020. The majority of infections are likely not reported. Decreases in seroprevalence may be related to changes in healthcare-seeking behavior, or evidence of waning of detectable anti-SARS-CoV-2 antibody levels at the population level. Thus, seroprevalence estimates may underestimate the cumulative incidence of infection.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Teorema de Bayes , Criança , Humanos , Estudos Soroepidemiológicos , Estados Unidos/epidemiologia , Utah
13.
Clin Infect Dis ; 72(11): e695-e703, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945846

RESUMO

BACKGROUND: Data on risk factors for coronavirus disease 2019 (COVID-19)-associated hospitalization are needed to guide prevention efforts and clinical care. We sought to identify factors independently associated with COVID-19-associated hospitalizations. METHODS: Community-dwelling adults (aged ≥18 years) in the United States hospitalized with laboratory-confirmed COVID-19 during 1 March-23 June 2020 were identified from the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), a multistate surveillance system. To calculate hospitalization rates by age, sex, and race/ethnicity strata, COVID-NET data served as the numerator and Behavioral Risk Factor Surveillance System estimates served as the population denominator for characteristics of interest. Underlying medical conditions examined included hypertension, coronary artery disease, history of stroke, diabetes, obesity, severe obesity, chronic kidney disease, asthma, and chronic obstructive pulmonary disease. Generalized Poisson regression models were used to calculate adjusted rate ratios (aRRs) for hospitalization. RESULTS: Among 5416 adults, hospitalization rates (all reported as aRR [95% confidence interval]) were higher among those with ≥3 underlying conditions (vs without) (5.0 [3.9-6.3]), severe obesity (4.4 [3.4-5.7]), chronic kidney disease (4.0 [3.0-5.2]), diabetes (3.2 [2.5-4.1]), obesity (2.9 [2.3-3.5]), hypertension (2.8 [2.3-3.4]), and asthma (1.4 [1.1-1.7]), after adjusting for age, sex, and race/ethnicity. Adjusting for the presence of an individual underlying medical condition, higher hospitalization rates were observed for adults aged ≥65 or 45-64 years (vs 18-44 years), males (vs females), and non-Hispanic black and other race/ethnicities (vs non-Hispanic whites). CONCLUSIONS: Our findings elucidate groups with higher hospitalization risk that may benefit from targeted preventive and therapeutic interventions.


Assuntos
COVID-19 , Adolescente , Adulto , Sistema de Vigilância de Fator de Risco Comportamental , Feminino , Hospitalização , Humanos , Masculino , Fatores de Risco , SARS-CoV-2 , Estados Unidos/epidemiologia
14.
Clin Infect Dis ; 73(11): 1973-1981, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34245243

RESUMO

BACKGROUND: RIV4 and cell-culture based inactivated influenza vaccine (ccIIV4) have not been compared to egg-based IIV4 in healthcare personnel, a population with frequent influenza vaccination that may blunt vaccine immune responses over time. We conducted a randomized trial among healthcare personnel (HCP) aged 18-64 years to compare humoral immune responses to ccIIV4 and RIV4 to IIV4. METHODS: During the 2018-2019 season, participants were randomized to receive ccIIV4, RIV4, or IIV4 and had serum samples collected prevaccination, 1 and 6 months postvaccination. Serum samples were tested by hemagglutination inhibition (HI) for influenza A/H1N1, B/Yamagata, and B/Victoria and microneutralization (MN) for A/H3N2 against cell-grown vaccine reference viruses. Primary outcomes at 1 month were seroconversion rate (SCR), geometric mean titers (GMT), GMT ratio, and mean fold rise (MFR) in the intention-to-treat population. RESULTS: In total, 727 participants were included (283 ccIIV4, 202 RIV4, and 242 IIV4). At 1 month, responses to ccIIV4 were similar to IIV4 by SCR, GMT, GMT ratio, and MFR. RIV4 induced higher SCRs, GMTs, and MFRs than IIV4 against A/H1N1, A/H3N2, and B/Yamagata. The GMT ratio of RIV4 to egg-based vaccines was 1.5 (95% confidence interval [CI] 1.2-1.9) for A/H1N1, 3.0 (95% CI: 2.4-3.7) for A/H3N2, 1.1 (95% CI: .9-1.4) for B/Yamagata, and 1.1 (95% CI: .9-1.3) for B/Victoria. At 6 months, ccIIV4 recipients had similar GMTs to IIV4, whereas RIV4 recipients had higher GMTs against A/H3N2 and B/Yamagata. CONCLUSIONS: RIV4 resulted in improved antibody responses by HI and MN compared to egg-based vaccines against 3 of 4 cell-grown vaccine strains 1 month postvaccination, suggesting a possible additional benefit from RIV4. CLINICAL TRIALS REGISTRATION: NCT03722589.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Técnicas de Cultura de Células , Atenção à Saúde , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/prevenção & controle , Vacinas de Produtos Inativados
15.
Clin Infect Dis ; 72(5): e162-e166, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270136

RESUMO

Among 513 adults aged 18-49 years without underlying medical conditions hospitalized with coronavirus disease 2019 (COVID-19) during March 2020-August 2020, 22% were admitted to an intensive care unit, 10% required mechanical ventilation, and 3 patients died (0.6%). These data demonstrate that healthy younger adults can develop severe COVID-19.


Assuntos
COVID-19 , Adolescente , Adulto , Hospitalização , Humanos , Unidades de Terapia Intensiva , Laboratórios , Pessoa de Meia-Idade , SARS-CoV-2 , Estados Unidos/epidemiologia , Adulto Jovem
16.
Clin Infect Dis ; 73(9): e3120-e3123, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300579

RESUMO

We compared severe acute respiratory syndrome coronavirus 2 seroprevalence estimated from commercial laboratory residual sera and a community household survey in metropolitan Atlanta during April and May 2020 and found these 2 estimates to be similar (4.94% vs 3.18%). Compared with more representative surveys, commercial sera can provide an approximate measure of seroprevalence.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Laboratórios , Estudos Soroepidemiológicos , Inquéritos e Questionários
17.
Clin Infect Dis ; 72(9): e206-e214, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32674114

RESUMO

BACKGROUND: Currently, the United States has the largest number of reported coronavirus disease 2019 (COVID-19) cases and deaths globally. Using a geographically diverse surveillance network, we describe risk factors for severe outcomes among adults hospitalized with COVID-19. METHODS: We analyzed data from 2491 adults hospitalized with laboratory-confirmed COVID-19 between 1 March-2 May 2020, as identified through the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network, which comprises 154 acute-care hospitals in 74 counties in 13 states. We used multivariable analyses to assess associations between age, sex, race and ethnicity, and underlying conditions with intensive care unit (ICU) admission and in-hospital mortality. RESULTS: The data show that 92% of patients had ≥1 underlying condition; 32% required ICU admission; 19% required invasive mechanical ventilation; and 17% died. Independent factors associated with ICU admission included ages 50-64, 65-74, 75-84, and ≥85 years versus 18-39 years (adjusted risk ratios [aRRs], 1.53, 1.65, 1.84, and 1.43, respectively); male sex (aRR, 1.34); obesity (aRR, 1.31); immunosuppression (aRR, 1.29); and diabetes (aRR, 1.13). Independent factors associated with in-hospital mortality included ages 50-64, 65-74, 75-84, and ≥ 85 years versus 18-39 years (aRRs, 3.11, 5.77, 7.67, and 10.98, respectively); male sex (aRR, 1.30); immunosuppression (aRR, 1.39); renal disease (aRR, 1.33); chronic lung disease (aRR 1.31); cardiovascular disease (aRR, 1.28); neurologic disorders (aRR, 1.25); and diabetes (aRR, 1.19). CONCLUSIONS: In-hospital mortality increased markedly with increasing age. Aggressive implementation of prevention strategies, including social distancing and rigorous hand hygiene, may benefit the population as a whole, as well as those at highest risk for COVID-19-related complications.


Assuntos
COVID-19 , Adulto , Mortalidade Hospitalar , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2 , Estados Unidos/epidemiologia
18.
Clin Infect Dis ; 73(7): e1841-e1849, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32719874

RESUMO

BACKGROUND: Improved understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spectrum of disease is essential for clinical and public health interventions. There are limited data on mild or asymptomatic infections, but recognition of these individuals is key as they contribute to viral transmission. We describe the symptom profiles from individuals with mild or asymptomatic SARS-CoV-2 infection. METHODS: From 22 March to 22 April 2020 in Wisconsin and Utah, we enrolled and prospectively observed 198 household contacts exposed to SARS-CoV-2. We collected and tested nasopharyngeal specimens by real-time reverse-transcription polymerase chain reaction (rRT-PCR) 2 or more times during a 14-day period. Contacts completed daily symptom diaries. We characterized symptom profiles on the date of first positive rRT-PCR test and described progression of symptoms over time. RESULTS: We identified 47 contacts, median age 24 (3-75) years, with detectable SARS-CoV-2 by rRT-PCR. The most commonly reported symptoms on the day of first positive rRT-PCR test were upper respiratory (n = 32 [68%]) and neurologic (n = 30 [64%]); fever was not commonly reported (n = 9 [19%]). Eight (17%) individuals were asymptomatic at the date of first positive rRT-PCR collection; 2 (4%) had preceding symptoms that resolved and 6 (13%) subsequently developed symptoms. Children less frequently reported lower respiratory symptoms (21%, 60%, and 69% for <18, 18-49, and ≥50 years of age, respectively; P = .03). CONCLUSIONS: Household contacts with laboratory-confirmed SARS-CoV-2 infection reported mild symptoms. When assessed at a single timepoint, several contacts appeared to have asymptomatic infection; however, over time all developed symptoms. These findings are important to inform infection control, contact tracing, and community mitigation strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Busca de Comunicante , Febre , Humanos , Estudos Prospectivos , Adulto Jovem
19.
MMWR Recomm Rep ; 69(8): 1-24, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820746

RESUMO

This report updates the 2019-20 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2019;68[No. RR-3]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Most influenza vaccines available for the 2020-21 season will be quadrivalent, with the exception of MF59-adjuvanted IIV, which is expected to be available in both quadrivalent and trivalent formulations.Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 23, 2019; February 26, 2020; and June 24, 2020. Primary updates to this report include the following two items. First, the composition of 2020-21 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B/Victoria lineage components. Second, recent licensures of two new influenza vaccines, Fluzone High-Dose Quadrivalent and Fluad Quadrivalent, are discussed. Both new vaccines are licensed for persons aged ≥65 years. Additional changes include updated discussion of contraindications and precautions to influenza vaccination and the accompanying Table, updated discussion concerning use of LAIV4 in the setting of influenza antiviral medication use, and updated recommendations concerning vaccination of persons with egg allergy who receive either cell culture-based IIV4 (ccIIV4) or RIV4.The 2020-21 influenza season will coincide with the continued or recurrent circulation of SARS-CoV-2 (the novel coronavirus associated with coronavirus disease 2019 [COVID-19]). Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient illnesses, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html.This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2020-21 season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration (FDA)-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.


Assuntos
Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Adolescente , Adulto , Comitês Consultivos , Idoso , Centers for Disease Control and Prevention, U.S. , Criança , Pré-Escolar , Feminino , Humanos , Esquemas de Imunização , Lactente , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza/efeitos adversos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Estações do Ano , Estados Unidos/epidemiologia , Vacinas Atenuadas/uso terapêutico , Adulto Jovem
20.
MMWR Morb Mortal Wkly Rep ; 69(5152): 1633-1637, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382676

RESUMO

To prevent further transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), CDC currently recommends that persons who have been in close contact with someone with SARS-CoV-2 infection should quarantine (stay away from other persons) for 14 days after the last known contact.* However, quarantine might be difficult to maintain for a prolonged period. A shorter quarantine might improve compliance, and CDC recommends two options to reduce the duration of quarantine for close contacts without symptoms, based on local circumstances and availability of testing: 1) quarantine can end on day 10 without a test or 2) quarantine can end on day 7 after receiving a negative test result.† However, shorter quarantine might permit ongoing disease transmission from persons who develop symptoms or become infectious near the end of the recommended 14-day period. Interim data from an ongoing study of household transmission of SARS-CoV-2 were analyzed to understand the proportion of household contacts that had detectable virus after a shortened quarantine period. Persons who were household contacts of index patients completed a daily symptom diary and self-collected respiratory specimens for 14 days. Specimens were tested for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR). Among 185 household contacts enrolled, 109 (59%) had detectable SARS-CoV-2 at any time; 76% (83/109) of test results were positive within 7 days, and 86% (94 of 109) were positive within 10 days after the index patient's illness onset date. Among household contacts who received negative SARS-CoV-2 test results and were asymptomatic through day 7, there was an 81% chance (95% confidence interval [CI] = 67%-90%) of remaining asymptomatic and receiving negative RT-PCR test results through day 14; this increased to 93% (95% CI = 78%-98%) for household members who were asymptomatic with negative RT-PCR test results through day 10. Although SARS-CoV-2 quarantine periods shorter than 14 days might be easier to adhere to, there is a potential for onward transmission from household contacts released before day 14.


Assuntos
COVID-19/diagnóstico , COVID-19/prevenção & controle , Busca de Comunicante , Características da Família , Quarentena/estatística & dados numéricos , Humanos , Tennessee/epidemiologia , Fatores de Tempo , Wisconsin/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA