Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Neurobiol Dis ; 197: 106520, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703861

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.


Assuntos
Transtorno do Espectro Autista , Biomarcadores , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Biomarcadores/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256266

RESUMO

Autism spectrum disorder (ASD) is a common condition with lifelong implications. The last decade has seen dramatic improvements in DNA sequencing and related bioinformatics and databases. We analyzed the raw DNA sequencing files on the Variantyx® bioinformatics platform for the last 50 ASD patients evaluated with trio whole-genome sequencing (trio-WGS). "Qualified" variants were defined as coding, rare, and evolutionarily conserved. Primary Diagnostic Variants (PDV), additionally, were present in genes directly linked to ASD and matched clinical correlation. A PDV was identified in 34/50 (68%) of cases, including 25 (50%) cases with heterozygous de novo and 10 (20%) with inherited variants. De novo variants in genes directly associated with ASD were far more likely to be Qualifying than non-Qualifying versus a control group of genes (p = 0.0002), validating that most are indeed disease related. Sequence reanalysis increased diagnostic yield from 28% to 68%, mostly through inclusion of de novo PDVs in genes not yet reported as ASD associated. Thirty-three subjects (66%) had treatment recommendation(s) based on DNA analyses. Our results demonstrate a high yield of trio-WGS for revealing molecular diagnoses in ASD, which is greatly enhanced by reanalyzing DNA sequencing files. In contrast to previous reports, de novo variants dominate the findings, mostly representing novel conditions. This has implications to the cause and rising prevalence of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Sequenciamento Completo do Genoma , Análise de Sequência de DNA , Biologia Computacional
3.
Dev Neurosci ; 45(6): 361-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742615

RESUMO

Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.


Assuntos
Coreia , Transtorno Obsessivo-Compulsivo , Infecções Estreptocócicas , Animais , Criança , Humanos , Autoimunidade , Coreia/diagnóstico , Coreia/complicações , Doenças Neuroinflamatórias , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/psicologia , Autoanticorpos/uso terapêutico , Inflamação
4.
Bioessays ; 43(9): e2000307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260745

RESUMO

Recent research has pointed to the importance of the prenatal environment in the etiology of autism spectrum disorder (ASD) but the biological mechanisms which mitigate these environmental factors are not clear. Mitochondrial metabolism abnormalities, inflammation and oxidative stress as common physiological disturbances associated with ASD. Network analysis of the scientific literature identified several leading prenatal environmental factors associated with ASD, particularly air pollution, pesticides, the microbiome and epigenetics. These leading prenatal environmental factors were found to be most associated with inflammation, followed by oxidative stress and mitochondrial dysfunction. Other prenatal factors associated with ASD not identified by the network analysis were also found to be significantly associated with these common physiological disturbances. A better understanding of the biological mechanism which mediate the effect of prenatal environmental factors can lead to insights of how ASD develops and the development of targeted therapeutics to prevent ASD from occuring.


Assuntos
Poluição do Ar , Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Epigênese Genética , Feminino , Humanos , Inflamação , Estresse Oxidativo , Gravidez
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768401

RESUMO

Early diagnosis of autism spectrum disorder (ASD) is crucial for providing appropriate treatments and parental guidance from an early age. Yet, ASD diagnosis is a lengthy process, in part due to the lack of reliable biomarkers. We recently applied RNA-sequencing of peripheral blood samples from 73 American and Israeli children with ASD and 26 neurotypically developing (NT) children to identify 10 genes with dysregulated blood expression levels in children with ASD. Machine learning (ML) analyzes data by computerized analytical model building and may be applied to building diagnostic tools based on the optimization of large datasets. Here, we present several ML-generated models, based on RNA expression datasets collected during our recently published RNA-seq study, as tentative tools for ASD diagnosis. Using the random forest classifier, two of our proposed models yield an accuracy of 82% in distinguishing children with ASD and NT children. Our proof-of-concept study requires refinement and independent validation by studies with far larger cohorts of children with ASD and NT children and should thus be perceived as starting point for building more accurate ML-based tools. Eventually, such tools may potentially provide an unbiased means to support the early diagnosis of ASD.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Biomarcadores , Aprendizado de Máquina , Diagnóstico Precoce , RNA/genética
6.
Mol Psychiatry ; 26(5): 1561-1577, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32963337

RESUMO

We investigate the role of the mitochondrion, an organelle highly sensitive to environmental agents, in the influence of prenatal air pollution exposure on neurodevelopment and behavior in 96 children with autism spectrum disorder (ASD) [45 with neurodevelopmental regression (NDR); 76% Male; mean (SD) age 10 y 9 m (3 y 9 m)]. Mitochondrial function was assessed using the Seahorse XFe96 in fresh peripheral blood mononuclear cells. Second and third trimester average and maximal daily exposure to fine air particulate matter of diameter ≤2.5 µm (PM2.5) was obtained from the Environmental Protection Agency's Air Quality System. Neurodevelopment was measured using the Vineland Adaptive Behavior Scale 2nd edition and behavior was assessed using the Aberrant Behavior Checklist and Social Responsiveness Scale. Prenatal PM2.5 exposure influenced mitochondrial respiration during childhood, but this relationship was different for those with (r = 0.25-0.40) and without (r = -0.07 to -0.19) NDR. Mediation analysis found that mitochondrial respiration linked to energy production accounted for 25% (SD = 2%) and 10% (SD = 2%) of the effect of average prenatal PM2.5 exposure on neurodevelopment and behavioral symptoms, respectively. Structural equation models estimated that PM2.5 and mitochondrial respiration accounted for 34% (SD = 4%) and 36% (SD = 3%) of the effect on neurodevelopment, respectively, and that behavior was indirectly influenced by mitochondrial respiration through neurodevelopment but directly influenced by prenatal PM2.5. Our results suggest that prenatal exposure to PM2.5 disrupts neurodevelopment and behavior through complex mechanisms, including long-term changes in mitochondrial respiration and that patterns of early development need to be considered when studying the influence of environmental agents on neurodevelopmental outcomes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Criança , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Exposição Materna , Mitocôndrias , Gravidez
7.
Am J Med Genet A ; 188(3): 858-866, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148024

RESUMO

Mosaicism in fragile X syndrome (FXS) refers to two different FMR1 allele variations: size mosaicism represents different numbers of CGG repeats between the two alleles, such that in addition to a full mutation allele there is an allele in the normal or premutation range of CGG repeats, while methylation mosaicism indicates whether a full-mutation allele is fully or partially methylated. The present study explored the association between mosaicism type and cognitive and behavioral functioning in a large sample of males 3 years and older (n = 487) with FXS, participating in the Fragile X Online Registry with Accessible Research Database. Participants with methylation mosaicism were less severely cognitively affected as indicated by a less severe intellectual disability rating, higher intelligence quotient and adaptive behavior score, and lower social impairment score. In contrast, the presence of size mosaicism was not significantly associated with better cognitive and behavioral outcomes than full mutation. Our findings suggest that methylation mosaicism is associated with better cognitive functioning and adaptive behavior and less social impairment. Further research could assess to what extent these cognitive and behavioral differences depend on molecular diagnostic methods and the impact of mosaicism on prognosis of individuals with FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Alelos , Cognição , Metilação de DNA , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Humanos , Masculino , Mosaicismo , Mutação
8.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077244

RESUMO

Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA SNPs, CNVs, and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from an Israeli discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using quantitative real-time PCR, we compared RNAs from whole blood samples of 73 Israeli and American children with ASD and 26 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the pro-inflammatory transcripts BATF2 and LY6E and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to neurotypical children. BATF2 was recently reported as upregulated in blood samples of Japanese adults with ASD. Our findings support an involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.


Assuntos
Transtorno do Espectro Autista , Neoplasias , Antígenos de Superfície , Transtorno do Espectro Autista/metabolismo , Citocinas/genética , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Humanos , Metalotioneína/genética , Análise de Sequência de RNA , Ubiquitinas/genética , Sequenciamento do Exoma
9.
Pharmacol Res ; 166: 105437, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493659

RESUMO

This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.


Assuntos
Transtorno do Espectro Autista/metabolismo , Glutationa/metabolismo , Animais , Apoptose , Transtorno do Espectro Autista/patologia , Dissulfeto de Glutationa/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia
10.
Am J Physiol Endocrinol Metab ; 317(3): E503-E512, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211617

RESUMO

Skeletal muscle mitochondrial respiration is thought to be altered in obesity, insulin resistance, and type 2 diabetes; however, the invasive nature of tissue biopsies is an important limiting factor for studying mitochondrial function. Recent findings suggest that bioenergetics profiling of circulating cells may inform on mitochondrial function in other tissues in lieu of biopsies. Thus, we sought to determine whether mitochondrial respiration in circulating cells [peripheral blood mononuclear cells (PBMCs) and platelets] reflects that of skeletal muscle fibers derived from the same subjects. PBMCs, platelets, and skeletal muscle (vastus lateralis) samples were obtained from 32 young (25-35 yr) women of varying body mass indexes. With the use of extracellular flux analysis and high-resolution respirometry, mitochondrial respiration was measured in intact blood cells as well as in permeabilized cells and permeabilized muscle fibers. Respiratory parameters were not correlated between permeabilized muscle fibers and intact PBMCs or platelets. In a subset of samples (n = 12-13) with permeabilized blood cells available, raw measures of substrate (pyruvate, malate, glutamate, and succinate)-driven respiration did not correlate between permeabilized muscle (per mg tissue) and permeabilized PBMCs (per 106 cells); however, complex I leak and oxidative phosphorylation coupling efficiency correlated between permeabilized platelets and muscle (Spearman's ρ = 0.64, P = 0.030; Spearman's ρ = 0.72, P = 0.010, respectively). Our data indicate that bioenergetics phenotypes in circulating cells cannot recapitulate muscle mitochondrial function. Select circulating cell bioenergetics phenotypes may possibly inform on overall metabolic health, but this postulate awaits validation in cohorts spanning a larger range of insulin resistance and type 2 diabetes status.


Assuntos
Células Sanguíneas/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Consumo de Oxigênio/fisiologia , Adulto , Glicemia/análise , Plaquetas/metabolismo , Índice de Massa Corporal , Metabolismo Energético/fisiologia , Feminino , Humanos , Insulina/sangue , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Fatores Acopladores da Fosforilação Oxidativa/metabolismo , Triglicerídeos/sangue
11.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995737

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD. The recognition of defects in energy metabolism in ASD may be important for better understanding ASD and developing therapeutic intervention. The nuclear peroxisome proliferator-activated receptors (PPAR) α, δ, and γ are ligand-activated receptors with distinct physiological functions in regulating lipid and glucose metabolism, as well as inflammatory response. PPAR activation allows a coordinated up-regulation of numerous FAO enzymes, resulting in significant PPAR-driven increases in mitochondrial FAO flux. Resveratrol (RSV) is a polyphenolic compound which exhibits metabolic, antioxidant, and anti-inflammatory properties, pointing to possible applications in ASD therapeutics. In this study, we review the evidence for the existing links between ASD and impaired mitochondrial FAO and review the potential implications for regulation of mitochondrial FAO in ASD by PPAR activators, including RSV.


Assuntos
Antioxidantes/uso terapêutico , Transtorno do Espectro Autista/tratamento farmacológico , Ácidos Graxos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Resveratrol/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Transtorno do Espectro Autista/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Oxirredução/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
FASEB J ; 31(3): 904-909, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27864377

RESUMO

Autism spectrum disorder (ASD) is associated with physiological abnormalities, including abnormal redox and mitochondrial metabolism. Lymphoblastoid cell lines (LCLs) from some children with ASD exhibit increased oxidative stress, decreased glutathione redox capacity, and highly active mitochondria with increased vulnerability to reactive oxygen species (ROS). Because unaffected siblings (Sibs) of individuals with ASD share some redox abnormalities, we sought to determine whether LCLs from Sibs share ASD-associated mitochondrial abnormalities. We evaluated mitochondrial bioenergetics in 10 sets of LCLs from children with ASD, Sibs, and unrelated/unaffected controls (Cons) after acute increases in ROS. Additionally, intracellular glutathione and uncoupling protein 2 (UCP2) gene expressions were quantified. Compared to Sib LCLs, ASD LCLs exhibited significantly higher ATP-linked respiration, higher maximal and reserve respiratory capacity, and greater glycolysis and glycolytic reserve. ASD LCLs exhibited a significantly greater change in these parameters, with acute increases in ROS compared to both Sib and Con LCLs. Compared to Con, both ASD and Sib LCLs exhibited significantly higher proton leak respiration. Consistent with this, intracellular glutathione redox capacity was decreased and UCP2 gene expression was increased in both ASD and Sib compared to Con LCLs. These data indicate that mitochondrial respiratory function, not abnormal redox homeostasis, distinguishes ASD from unaffected LCLs.-Rose, S., Bennuri, S. C., Wynne, R., Melnyk, S., James, S. J., Frye, R. E. Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study.


Assuntos
Transtorno do Espectro Autista/metabolismo , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Adolescente , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Glutationa/metabolismo , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Irmãos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
14.
Genet Med ; 19(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28749475

RESUMO

The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease.


Assuntos
Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Padrão de Cuidado , Gerenciamento Clínico , Humanos
15.
Metab Brain Dis ; 32(5): 1335-1355, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28752219

RESUMO

The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.


Assuntos
Compostos de Alumínio/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Síndromes Neurotóxicas/psicologia , Adulto , Compostos de Alumínio/química , Criança , Humanos , Síndromes Neurotóxicas/epidemiologia , Vacinas/efeitos adversos , Vacinas/química
16.
Metab Brain Dis ; 32(6): 1983-1997, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28831647

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is behaviorally defined by social and communication impairments and restricted interests and repetitive behaviors. There is currently no biomarkers that can help in the diagnosis. Several studies suggest that mitochondrial dysfunction is commonly involved in ASD pathophysiology, but standard mitochondrial biomarkers are thought to be very variable. In the present study we examine a wide variety of plasma biomarkers of mitochondrial metabolism and the related abnormalities of oxidative stress and apoptosis in 41 ASD patients assessed for ASD severity using the Childhood Autism Rating Scales and 41 non-related age and sex matched healthy controls. Our findings confirm previous studies indicating abnormal mitochondrial and related biomarkers in children with ASD including pyruvate, creatine kinase, Complex 1, Glutathione S-Transferase, glutathione and Caspase 7. As a novel finding, we report that lactate dehydrogenase is abnormal in children with ASD. We also identified that only the most severe children demonstrated abnormalities in Complex 1 activity and Glutathione S-Transferase. Additionally, we find that several biomarkers could be candidates for differentiating children with ASD and typically developing children, including Caspase 7, gluthatione and Glutathione S-Transferase by themselves and lactate dehydrogenase and Complex I when added to other biomarkers in combination. Caspase 7 was the most discriminating biomarker between ASD patients and healthy controls suggesting its potential use as diagnostic marker for the early recognition of ASD pathophysiology. This study confirms that several mitochondrial biomarkers are abnormal in children with ASD and suggest that certain mitochondrial biomarkers can differentiate between ASD and typically developing children, making them possibly useful as a tool to diagnosis ASD and identify ASD subgroups.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Biomarcadores/sangue , Caspase 7/sangue , Glutationa Transferase/sangue , L-Lactato Desidrogenase/sangue , Adolescente , Transtorno do Espectro Autista/sangue , Criança , Pré-Escolar , Humanos , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Índice de Gravidade de Doença
17.
Metab Brain Dis ; 32(6): 2021-2031, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28852932

RESUMO

Autism spectrum disorder (ASD) has been associated with mitochondrial dysfunction but few studies have examined the relationship between mitochondrial function and ASD symptoms. We measured Complex I and IV and citrate synthase activities in 76 children with ASD who were not receiving vitamin supplementation or medication. We also measured language using the Preschool Language Scales or Clinical Evaluation of Language Fundamentals, adaptive behavior using the Vineland Adaptive Behavioral Scale, social function using the Social Responsiveness Scale and behavior using Aberrant Behavior Checklist, Childhood Behavior Checklist and the Ohio Autism Clinical Impression Scale. Children with ASD demonstrated significantly greater variation in mitochondrial activity compared to controls with more than expected ASD children having enzyme activity outside of the normal range for Citrate Synthase (24%), Complex I (39%) and Complex IV (11%). Poorer adaptive skills were associated with Complex IV activity lower or higher than average and lower Complex I activity. Poorer social function and behavior was associated with relatively higher Citrate Synthase activity. Similar to previous studies we find both mitochondrial underactivity and overactivity in ASD. This study confirms an expanded variation in mitochondrial activity in ASD and demonstrates, for the first time, that such variations are related to ASD symptoms.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Cognição/fisiologia , Metabolismo Energético , Feminino , Humanos , Masculino , Habilidades Sociais , Avaliação de Sintomas
18.
Pediatr Nurs ; 42(5): 230-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29406641

RESUMO

Long thought to be purely psychological in origin, current research lends credenceto the idea that autism has a medical basis. Patients with autism can be among themost challenging patients that a healthcare provider may care for. Often the presentingsymptoms of autism make these patients difficult to examine and may alsomask underlying concurrent conditions. This article reviews some of the more commonconditions found concurrently in the autistic population.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Gastroenteropatias/etiologia , Doenças do Sistema Imunitário/etnologia , Doenças do Sistema Nervoso/etiologia , Transtornos do Sono-Vigília/etiologia , Adolescente , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Comorbidade , Feminino , Gastroenteropatias/epidemiologia , Gastroenteropatias/terapia , Humanos , Doenças do Sistema Imunitário/epidemiologia , Doenças do Sistema Imunitário/terapia , Lactente , Masculino , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/terapia , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/terapia
19.
Epilepsy Behav ; 47: 147-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25440829

RESUMO

Autism spectrum disorder (ASD) affects a significant number of individuals in the United States, with the prevalence continuing to grow. A significant proportion of individuals with ASD have comorbid medical conditions such as epilepsy. In fact, treatment-resistant epilepsy appears to have a higher prevalence in children with ASD than in children without ASD, suggesting that current antiepileptic treatments may be suboptimal in controlling seizures in many individuals with ASD. Many individuals with ASD also appear to have underlying metabolic conditions. Metabolic conditions such as mitochondrial disease and dysfunction and abnormalities in cerebral folate metabolism may affect a substantial number of children with ASD, while other metabolic conditions that have been associated with ASD such as disorders of creatine, cholesterol, pyridoxine, biotin, carnitine, γ-aminobutyric acid, purine, pyrimidine, and amino acid metabolism and urea cycle disorders have also been associated with ASD without the prevalence clearly known. Interestingly, all of these metabolic conditions have been associated with epilepsy in children with ASD. The identification and treatment of these disorders could improve the underlying metabolic derangements and potentially improve behavior and seizure frequency and/or severity in these individuals. This paper provides an overview of these metabolic disorders in the context of ASD and discusses their characteristics, diagnostic testing, and treatment with concentration on mitochondrial disorders. To this end, this paper aims to help optimize the diagnosis and treatment of children with ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/metabolismo , Epilepsia/complicações , Epilepsia/metabolismo , Doenças Metabólicas/complicações , Doenças Mitocondriais/complicações , Criança , Humanos
20.
Microb Ecol Health Dis ; 26: 27458, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956238

RESUMO

Autism spectrum disorder (ASD) affects a significant number of individuals worldwide with the prevalence continuing to grow. It is becoming clear that a large subgroup of individuals with ASD demonstrate abnormalities in mitochondrial function as well as gastrointestinal (GI) symptoms. Interestingly, GI disturbances are common in individuals with mitochondrial disorders and have been reported to be highly prevalent in individuals with co-occurring ASD and mitochondrial disease. The majority of individuals with ASD and mitochondrial disorders do not manifest a primary genetic mutation, raising the possibility that their mitochondrial disorder is acquired or, at least, results from a combination of genetic susceptibility interacting with a wide range of environmental triggers. Mitochondria are very sensitive to both endogenous and exogenous environmental stressors such as toxicants, iatrogenic medications, immune activation, and metabolic disturbances. Many of these same environmental stressors have been associated with ASD, suggesting that the mitochondria could be the biological link between environmental stressors and neurometabolic abnormalities associated with ASD. This paper reviews the possible links between GI abnormalities, mitochondria, and ASD. First, we review the link between GI symptoms and abnormalities in mitochondrial function. Second, we review the evidence supporting the notion that environmental stressors linked to ASD can also adversely affect both mitochondria and GI function. Third, we review the evidence that enteric bacteria that are overrepresented in children with ASD, particularly Clostridia spp., produce short-chain fatty acid metabolites that are potentially toxic to the mitochondria. We provide an example of this gut-brain connection by highlighting the propionic acid rodent model of ASD and the clinical evidence that supports this animal model. Lastly, we discuss the potential therapeutic approaches that could be helpful for GI symptoms in ASD and mitochondrial disorders. To this end, this review aims to help better understand the underlying pathophysiology associated with ASD that may be related to concurrent mitochondrial and GI dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA