RESUMO
BACKGROUND: Darolutamide is a potent androgen-receptor inhibitor that has been associated with increased overall survival among patients with nonmetastatic, castration-resistant prostate cancer. Whether a combination of darolutamide, androgen-deprivation therapy, and docetaxel would increase survival among patients with metastatic, hormone-sensitive prostate cancer is unknown. METHODS: In this international, phase 3 trial, we randomly assigned patients with metastatic, hormone-sensitive prostate cancer in a 1:1 ratio to receive darolutamide (at a dose of 600 mg [two 300-mg tablets] twice daily) or matching placebo, both in combination with androgen-deprivation therapy and docetaxel. The primary end point was overall survival. RESULTS: The primary analysis involved 1306 patients (651 in the darolutamide group and 655 in the placebo group); 86.1% of the patients had disease that was metastatic at the time of the initial diagnosis. At the data cutoff date for the primary analysis (October 25, 2021), the risk of death was significantly lower, by 32.5%, in the darolutamide group than in the placebo group (hazard ratio 0.68; 95% confidence interval, 0.57 to 0.80; P<0.001). Darolutamide was also associated with consistent benefits with respect to the secondary end points and prespecified subgroups. Adverse events were similar in the two groups, and the incidences of the most common adverse events (occurring in ≥10% of the patients) were highest during the overlapping docetaxel treatment period in both groups. The frequency of grade 3 or 4 adverse events was 66.1% in the darolutamide group and 63.5% in the placebo group; neutropenia was the most common grade 3 or 4 adverse event (in 33.7% and 34.2%, respectively). CONCLUSIONS: In this trial involving patients with metastatic, hormone-sensitive prostate cancer, overall survival was significantly longer with the combination of darolutamide, androgen-deprivation therapy, and docetaxel than with placebo plus androgen-deprivation therapy and docetaxel, and the addition of darolutamide led to improvement in key secondary end points. The frequency of adverse events was similar in the two groups. (Funded by Bayer and Orion Pharma; ARASENS ClinicalTrials.gov number, NCT02799602.).
Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Pirazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Receptores de Andrógenos/efeitos adversos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Docetaxel/efeitos adversos , Docetaxel/uso terapêutico , Quimioterapia Combinada , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/tratamento farmacológico , Neutropenia/induzido quimicamente , Modelos de Riscos Proporcionais , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração , Pirazóis/efeitos adversosRESUMO
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Assuntos
Plantas , Esfingolipídeos , Humanos , Animais , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Plantas/metabolismo , Fungos/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , MamíferosRESUMO
In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.
RESUMO
Metal-organic frameworks (MOFs) with kagomé lattice are attractive for their unique physical and chemical properties, but little attention has been paid to their catalytic properties. Herein, we report a 2D MOF based on a phosphonato-amino-carboxylate ligand (NaHL), i.e., [Na0.33Co(L)(CH3OH)2](NO3)0.33 (2), which exhibits an unconventional kagomé lattice. The formation of this kagomé lattice is caused by the selective recognition of the NO3- anion by the phenolato group of L2- as evidenced by theoretical calculations. Compound 2 can be utilized for the α-methoxymethylation and aminomethylation of aromatic ketones using methanol as a C1 source. Interestingly, compound 2 can be exfoliated in-situ into nanosheets with one-layer thickness under catalytic reaction conditions, which improves the catalytic efficiency. Based on the results of experiments and theoretical calculations, we proposed possible pathways for the catalytic reaction.
RESUMO
The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.
Assuntos
Ascomicetos , Ciclo Celular , Autofagia , Parede CelularRESUMO
Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.
Assuntos
Ascomicetos , Virulência , Proteínas , Ubiquitinação , AutofagiaRESUMO
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Assuntos
Autofagia , Proteínas Fúngicas , Oryza , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Oryza/microbiologia , Virulência/genética , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/enzimologia , Sistema de Sinalização das MAP Quinases , Estresse OxidativoRESUMO
Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.
Assuntos
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polissacarídeos/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/genéticaRESUMO
The high-gravity reactor, known for its excellent mass transfer capability, plays a crucial role in the carbon capture process. The wire mesh packing serves as the core structure for enhancing mass transfer performance. Understanding the underlying dispersion mechanism requires a thorough exploration of the dynamics of droplet impact on a single fiber. This work aimed to numerically study the process of a droplet impacting a single fiber by applying the volume of fluid method. The effects of initial velocity (u0), initial diameter (D0), impact eccentric distance (e), and impact angle (θ) on the deformation evolution and dispersion characteristics of a droplet impacting a single fiber were systematically studied. Central or vertical impacts can be categorized into four main stages: splitting, merging, stretching, and breaking. Meanwhile, asynchronous breaking, sliding splitting, and oblique stages were observed during eccentric and nonvertical impacts. Subsequently, dimensionless time (t*) and the rate of increase of the gas-liquid interfacial area (η) were introduced to quantitatively analyze the dispersion characteristics postimpact. Increasing the initial velocity, reducing the droplet diameter, minimizing the impact eccentric distance, and maximizing the impact angle all contribute to enhanced dispersion performance. A correlation for the maximum increase rate of the gas-liquid interfacial area of the droplet was proposed, with errors less than ±15%. Finally, the deformation mechanism of droplet impact on a fiber was summarized by analyzing the influences of differential pressure inside and outside the liquid film, as well as gas vortices.
RESUMO
High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.
Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Verde de Indocianina/toxicidade , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular TumoralRESUMO
AIMS: To investigate the effect of Klebsiella pneumoniae carbapenemase (KPC)-loaded outer membrane vesicles (OMVs) in protecting Pseudomonas aeruginosa against imipenem treatment and its mechanism. METHODS: The OMVs of carbapenem-resistant Klebsiella pneumonia (CRKP) were isolated and purified from the supernatant of bacterial culture by using ultracentrifugation and Optiprep density gradient ultracentrifugation. The transmission electron microscope, bicinchoninic acid, PCR and carbapenemase colloidal gold assays were applied to characterize the OMVs. Bacterial growth and larvae infection experiments were performed to explore the protective function of KPC-loaded OMVs for P. aeruginosa under imipenem treatment. Ultra-performance liquid chromatography, antimicrobial susceptibility testing, whole-genome sequencing and bioinformatics analysis were used to investigate the mechanism of P. aeruginosa resistance phenotype mediated by OMVs. RESULTS: CRKP secreted OMVs loaded with KPC, which protect P. aeruginosa from imipenem through hydrolysis of antibiotics in a dose- and time-dependent manner. Furthermore, carbapenem-resistant subpopulations were developed in P. aeruginosa by low concentrations of OMVs that were confirmed to inadequately hydrolyze imipenem. Interestingly, none of the carbapenem-resistant subpopulations obtained the exogenous antibiotic resistance genes, but all of them possessed OprD mutations, which was consistent with the mechanism of P. aeruginosa induced by sub-minimal inhibitory concentrations of imipenem. CONCLUSIONS: OMVs containing KPC provide a novel route for P. aeruginosa to acquire an antibiotic-resistant phenotype in vivo.
Assuntos
Antibacterianos , Imipenem , Imipenem/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Mutação , Testes de Sensibilidade MicrobianaRESUMO
PURPOSE: To investigate efficacy of 3-month teriparatide(TPD) and compare this treatment with vertebroplasty in terms of clinical and radiographic outcomes after osteoporotic vertebral compression fractures (OVCFs). METHODS: This is a retrospective matched cohort study. Patients who received conservative treatment with at least 3-month TPD treatment for acute OVCF with at least 6 months follow-up were included. Each enrolled TPD case was matched with 2 vertebroplasty cases using age and gender. 30 TPD cases and 60 vertebroplasty cases were enrolled. Patient-reported pain scores were obtained at diagnosis and 1, 3, 6 months after diagnosis. Radiographic parameters including middle body height, posterior body height, wedge angle and kyphotic angle were measured at diagnosis and 6 months after diagnosis. Fracture non-union and subsequent vertebral fracture were evaluated. RESULTS: TPD treatment showed inferior pain relief to vertebroplasty group at 1 month, but did not show difference at 3 and 6 months after diagnosis. In TPD cases, progression of vertebral body collapse was noted in terms of middle body height and wedge angle at final follow up. Instead, both middle body height and wedge angle increased significantly after operation in the vertebroplasty group. Fracture non-union was confirmed via MRI and 4 TPD patients were diagnosed with non-union (4/30, 13.3%). Subsequent compression fracture within 6 months was significant higher in vertebroplasty group (12/60, 20%) than in TPD group (1/30, 3.3%). CONCLUSION: In acute OVCFs, 3-month TPD treatment alone showed comparable pain improvement and less subsequent spine fracture than vertebroplasty.
Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Teriparatida , Vertebroplastia , Humanos , Fraturas por Compressão/cirurgia , Fraturas por Compressão/diagnóstico por imagem , Vertebroplastia/métodos , Feminino , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Idoso , Masculino , Fraturas por Osteoporose/cirurgia , Fraturas por Osteoporose/diagnóstico por imagem , Estudos Retrospectivos , Teriparatida/uso terapêutico , Idoso de 80 Anos ou mais , Resultado do Tratamento , Conservadores da Densidade Óssea/uso terapêutico , Pessoa de Meia-Idade , Manejo da Dor/métodosRESUMO
Heated effluent injection, cold hypolimnetic water inputs from dams, and extreme weather events can lead to unpredictable temperature fluctuations in natural waters, impacting fish performance and fitness. We hypothesized that fish exposed to such unpredictable fluctuations would exhibit weaker growth and enhanced thermal tolerance compared to predictable conditions. Qingbo (Spinibarbus sinensis) was selected as the experimental subject in this study. The qingbo were divided into a constant temperature group (C, 22 ± 0.5 °C), a predictable temperature fluctuation group (PF, 22 ± 4 °C, first warming, then cooling within a day) and an unpredictable temperature fluctuation group (UF, 22 ± 4 °C, the order of warming or cooling is random). After 40 days of temperature acclimation, the growth, metabolic rate, spontaneous activity, thermal tolerance, plasma cortisol concentration and liver hsp70 level of the fish were measured. Unexpectedly, neither the PF nor the UF group showed decreased growth compared to the C group. This could be attributed to the fact that temperature variation did not lead to a substantial increase in basic energy expenditure. Furthermore, feeding rates increased due to temperature fluctuations, although the difference was not significant. Both the PF and UF groups exhibited increased upper thermal tolerance, but only the UF group exhibited improved lower thermal tolerance and higher liver hsp70 levels compared to the C group. The qingbo that experienced unpredictable temperature fluctuations had the best thermal tolerance among the 3 groups, which might have occurred because they had the highest level of hsp70 expression. This may safeguard fish against the potential lethal consequences of extreme temperatures in the future. These findings suggested that qingbo exhibited excellent adaptability to both predictable and unpredictable temperature fluctuations, which may be associated with frequent temperature fluctuations in its natural habitat.
Assuntos
Aclimatação , Temperatura , Animais , Aclimatação/fisiologia , Termotolerância , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Fígado/metabolismo , Fígado/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Metabolismo Basal , Metabolismo EnergéticoRESUMO
Bodyweight loss and rumen microbial dysfunction of grazing sheep was a challenge for the sheep production industry during cold season, which were considered to correlated with under-roughage-feeding. Alfalfa is a good roughage supplementary for ruminants, which can improve grazing sheep bodyweight-loss and rumen microbial dysfunction during grass-withering period. This study evaluated the effects of alfalfa hay supplementary change dietary non-fibrous carbohydrate/neutral detergent fiber (NFC/NDF) ratios on rumen fermentation and microbial function of Gansu alpine fine wool sheep during extreme cold season. 120 ewes (3-4 yrs) with an average body weight of 28.71 ± 1.22 kg were allocated randomly into three treatments, and fed NFC/NDF of 1.92 (H group), 1.11 (M group), and 0.68 (L group), respectively. This study was conducted for 107 d, including 7 d of adaption to the diets. The rumen fermentation parameters and microbial characteristics were measured after the end of feeding trials. The results showed that the concentrations of sheep body weight, nitrogen components (Total-N, Soluble protein-N and Ammonia-N), blood biochemical indices (LDH, BUN and CHO) and ruminal volatile fatty acids (TVFA and propionate) significantly increased with an increase in the proportion of NFC/NDF ratios (p < .05), and the acetate and acetate/propionat ratio presented a contrary decreasing trend (p < .05). A total of 1018 OTUs were obtained with 97% consistency. Ruminococcus, Ruminococcaceae and Prevotella were observed as the predominant phyla in ruminal fluid microbiota. Higher NFC/NDF ratios with Alfalfa supplementary increased the richness and diversity of ruminal fluid microbiota, and decreased ruminal fluid microbiota beta-diversity. Using clusters of orthologous groups (COG), the ruminal fluid microbiota of alfalfa supplementary feeding showed low immune pathway and high carbohydrate metabolism pathway. In summary, the study suggested that there was an increasing tendency in dietary NFC/NDF ratio of 1.92 in body weight, ruminal fermentation, microbial community composition and fermentation characteristics through developing alfalfa supplementary system.
Assuntos
Carboidratos da Dieta , Medicago sativa , Animais , Ovinos , Feminino , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Medicago sativa/metabolismo , Detergentes/análise , Detergentes/metabolismo , Carneiro Doméstico , Lactação , Rúmen/metabolismo , Fermentação , Lã , Ração Animal/análise , Dieta/veterinária , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Acetatos/análise , Acetatos/metabolismo , Peso CorporalRESUMO
Three new diterpenoid alkaloids (1, 2, 3) and seventeen known (4-20) compounds were isolated from the whole plant of Delphinium sherriffii Munz (Ranunculaceae). Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were evaluated for the inhibitory activity of Sf9 cells and compound 5 exhibited the strongest cytotoxicity (IC50 = 8.97 µM) against Sf9 cell line.
RESUMO
Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.
Assuntos
Alumínio , Dendrobium , Regulação da Expressão Gênica de Plantas , Orchidaceae , Filogenia , Proteínas de Plantas , Alumínio/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Família Multigênica , Regiões Promotoras Genéticas , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Malatos/metabolismo , Sequência de AminoácidosRESUMO
Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.
Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão GênicaRESUMO
In order to effectively adjust reservoir heterogeneity and further exploit the remaining oil, a new type of low-viscosity gel was prepared by adding a regulating agent, retarder, and reinforcing agent on the basis of a polymer + Cr3+ crosslinking system. The new gel has the advantages of low initial viscosity, a slow gel formation rate, and high strength after gel formation. The effectiveness of the gel was verified through three-layer core displacement experiments, and the injection scheme was optimized by changing the slug combination of the polymer and the gel. The results showed that the gel can effectively block the high-permeability layer and adjust reservoir heterogeneity. An injection of 0.1 pore volume (PV) low-initial-viscosity gel can improve oil recovery by 5.10%. By changing the slug combination of the gel and polymer, oil recovery was further increased by 3.12% when using an injection of 0.07 PV low-initial-viscosity gel +0.2 PV high-concentration polymer +0.05 PV low-initial-viscosity gel +0.5 PV high-concentration polymer.
RESUMO
Conjugated coordination polymers (CCPs), which possess long-range planar π-d conjugation, are fascinating for various applications because they inherit the merits of both metal-organic frameworks (MOFs) and conducting polymers. However, only one-dimensional (1D) and two-dimensional (2D) CCPs have been reported so far. The synthesis of three-dimensional (3D) CCPs is challenging and even seems theoretically infeasible because conjugation implies 1D or 2D structure. Besides, the redox activity of the conjugated ligands and the π-d conjugation makes the synthesis of CCPs very complicated, and hence, single crystals of CCPs are rarely achieved. Herein, we reported the first 3D CCP and its single crystals with atomically precise structures. The synthesis process involves complicated in situ dimerization, deprotonation of ligands, oxidation/reduction of both ligands and metal ions, and precise coordination between them. The crystals contain in-plane 1D π-d conjugated chains and close π-π interactions between the adjacent chains that are bridged by another column of stacked chains, thus forming 3D CCP with high conductivity (400 S m-1 at room temperature and 3100 S m-1 at 423 K) and potential applications as cathodes in sodium-ion batteries with high capacity, rate capability, and cyclability.
RESUMO
We aim to assess the safety and efficacy of proxalutamide, a novel androgen receptor antagonist, for men with metastatic castration-resistant prostate cancer (mCRPC) in a multicenter, randomized, open-label, phase 2 trial. In our study, the enrolled mCRPC patients were randomized to 100, 200 and 300 mg dose groups at 1:1:1. The primary efficacy endpoint was prostate-specific antigen (PSA) response rate. The secondary endpoints included objective response rate (ORR), disease control rate (DCR) and time to PSA and radiographic progression. Safety and pharmacokinetics were also assessed. Finally, there were 108 patients from 17 centers being enrolled. By week 16, there were 13 (35.1%), 12 (36.4%) and 15 (42.9%) patients with confirmed 50% or greater PSA decline in 100 mg (n = 37), 200 mg (n = 33) and 300 mg (n = 35) groups, respectively. Among the 19 patients with target lesions at study entry, three (15.8%) had a partial response and 12 (63.2%) had stable disease. The ORRs of 20.0%, 22.2%, 0% and DCRs of 80.0%, 88.9%, 60.0% were, respectively, achieved in 100, 200 and 300 mg groups. By the maximum follow-up time of 24 weeks, there were 42.6% and 10.2% of cases experiencing PSA progression and radiographic progression, respectively. Overall, adverse events (AEs) were experienced by 94.4% of patients, most of which were mild or moderate. There were 28 patients experiencing ≥grade 3 AEs. The most common AEs were fatigue (17.6%), anemia (14.8%), elevated AST (14.8%) and ALT (13.0%), decreased appetite (13.0%). These findings preliminarily showed the promising antitumor activity of proxalutamide in patients with mCRPC with a manageable safety profile. The proxalutamide dose of 200 mg daily is recommended for future phase 3 trial (Clinical trial registration no. CTR20170177).