RESUMO
Aroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.
Assuntos
Piper nigrum , Compostos Orgânicos Voláteis , Frutas/genética , Frutas/química , Odorantes/análise , Transcriptoma , Melhoramento Vegetal , Metaboloma , Genes Reguladores , Compostos Orgânicos Voláteis/análiseRESUMO
The wide application of pepper is mostly related to the content of capsaicin, and phenylpropanoid metabolism and its branch pathways may play an important role in the biosynthesis of capsaicin. The expression level of MYB24, a transcription factor screened from the transcriptome data of the pepper fruit development stage, was closely related to the spicy taste. In this experiment, CcMYB24 was cloned from Hainan Huangdenglong pepper, a hot aromatic pepper variety popular in the world for processing, and its function was confirmed by tissue expression characteristics, heterologous transformation in Arabidopsis thaliana, and VIGS technology. The results showed that the relative expression level of CcMYB24 was stable in the early stage of pepper fruit development, and increased significantly from 30 to 50 days after flowering. Heterologous expression led to a significant increase in the expression of CcMYB24 and decrease in lignin content in transgenic Arabidopsis thaliana plants. CcMYB24 silencing led to a significant increase in the expression of phenylpropanoid metabolism pathway genes PAL, 4CL, and pAMT; lignin branch CCR1 and CAD; and capsaicin pathway CS, AT3, and COMT genes in the placenta of pepper, with capsaicin content increased by more than 31.72% and lignin content increased by 20.78%. However, the expression of PAL, pAMT, AT3, COMT, etc., in the corresponding pericarps did not change significantly. Although CS, CCR1, and CAD increased significantly, the relative expression amount was smaller than that in placental tissue, and the lignin content did not change significantly. As indicated above, CcMYB24 may negatively regulate the formation of capsaicin and lignin by regulating the expression of genes from phenylpropanoid metabolism and its branch pathways.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Capsicum , Gravidez , Feminino , Humanos , Capsicum/metabolismo , Capsaicina/metabolismo , Lignina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Placenta/metabolismo , Frutas/química , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismoRESUMO
Pepper agronomic traits serve as pivotal indicators for characterizing germplasm attributes and correlations. It is important to study differential genotypic variation through phenotypic differences of target traits. Whole genome resequencing was used to sequence the whole genome among different individuals of species with known reference genomes and annotations, and based on this, differential analyses of individuals or populations were carried out to identify SNPs for agronomic traits related to pepper. This study conducted a genome-wide association study encompassing 26 key agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. The population structure (phylogenetics, population structure, population principal component analysis, genetic relationship) and linkage disequilibrium analysis were realized to ensure the accuracy and reliability of GWAS results, and the optimal statistical model was determined. A total of 929 SNPs significantly associated with 26 agronomic traits, were identified, alongside the detection of 519 candidate genes within 100 kb region adjacent to these SNPs. Additionally, through gene annotation and expression pattern scrutiny, genes such as GAUT1, COP10, and DDB1 correlated with fruit traits in Capsicum frutescens and Capsicum annuum were validated via qRT-PCR. In the CH20 (Capsicum annuum) and YB-4 (Capsicum frutescens) cultivars, GAUT1 and COP10 were cloned with cDNA lengths of 1065 bp and 561 bp, respectively, exhibiting only a small number of single nucleotide variations and nucleotide deletions. This validation provides a robust reference for molecular marker-assisted breeding of pepper agronomic traits, offering both genetic resources and theoretical foundations for future endeavors in molecular marker-assisted breeding for pepper.
Assuntos
Capsicum , Frutas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas , Filogenia , Genoma de PlantaRESUMO
Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.
RESUMO
Trichome is important for help plant resist adversity and external damage. However, it often affects the appearance and taste of vegetables. In the present study, the trichome density of leaves from two Chinese cabbage cultivars with and without trichomes treated at low temperature are analyzed by biological microscope, and the differentially expressed genes related to trichomes formation were screened through transcriptome sequencing. The results showed that the number of leaves trichomes was reduced by 34.7% at low temperature compared with room temperature. A total of 661 differentially expression genes effecting trichomes formation were identified at the CT vs C, LCT vs LC, CT vs LCT. Several differentially expression genes from every comparison group were enriched in plant hormone signal transduction and amino acid biosynthesis pathway. Combined with the central genes obtained by WGCNA analysis, five candidate genes Bra029778, Bra026393, Bra030270, Bra037264 and Bra009655 were screened. qRT-PCR analysis verified that the gene expression differences were in line with the trend of transcriptome data. This study not only found possible new key genes and laid a foundation for revealing the molecular mechanism regulating the formation of trichome in Chinese cabbage, but also provided a new way to study plant surface trichomes.