Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174446

RESUMO

Dictyophora indusiata is one of the most famous edible mushrooms in China. D. indusiata polysaccharide (DP) has attracted increasing attention because of its multiple beneficial effects. In this study, the in vitro simulated digestion and microbial fermentation were designed to reveal the potential catabolic property of DP and its impacts on the modulation of gut microbial composition. The results showed that the reducing sugar content, total polysaccharides content, molecular weight, and rheological property of DP were not significantly altered under in vitro simulated digestive conditions. However, the molecular weight, apparent viscosity, and total polysaccharides content of indigestible DP (DPI) significantly decreased during in vitro fecal fermentation, and the reducing sugar content and the release of free monosaccharides notably increased, suggesting that DP could be degraded and used by gut microbiota. Additionally, the relative abundances of several beneficial bacteria, such as Bacteroides, Catenibacterium, Parabacteroides, and Megamonas, increased significantly, indicating that DP can regulate the composition and abundance of gut microbiota. Moreover, DP could also promote the production of SCFAs, thus changing the acid-base environment of the large intestine. The results of this study are beneficial for deeply clarifying the catabolic behavior of DP in the gastrointestinal tract, which can provide a theoretical basis for developing microbiota-directed products based on DP.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009297

RESUMO

The leaf of sweet tea (Lithocarpus litseifolius) is widely used as an edible and medicinal plant in China, which is rich in bioactive polysaccharides. In order to explore and promote the application of sweet tea polysaccharides in the functional food industry, the microwave-assisted deep eutectic solvent extraction (MDAE) of polysaccharides from sweet tea leaves was optimized, and the structural properties and biological functions of sweet tea polysaccharides prepared by MDAE (P-DM) were investigated and compared with that of hot water extraction (P-W). The maximum yield (4.16% ± 0.09%, w/w) of P-DM was obtained under the optimal extraction conditions (extraction time of 11.0 min, extraction power of 576.0 W, water content in deep eutectic solvent of 21.0%, and liquid-solid ratio of 29.0 mL/g). Additionally, P-DM and P-W possessed similar constituent monosaccharides and glycosidic bonds, and the homogalacturonan (HG) and arabinogalactan (AG) might exist in both P-DM and P-W. Notably, the lower molecular weight, higher content of total uronic acids, and higher content of conjugated polyphenols were observed in P-DW compared to P-W, which might contribute to its much stronger in vitro antioxidant, anti-diabetic, antiglycation, and prebiotic effects. Besides, both P-DW and P-W exhibited remarkable in vitro immunostimulatory effects. The findings from the present study indicate that the MDAE has good potential to be used for efficient extraction of bioactive polysaccharides from sweet tea leaves and P-DM can be developed as functional food ingredients in the food industry.

3.
Int J Biol Macromol ; 222(Pt B): 3215-3228, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243163

RESUMO

Although sweet tea is rich in bioactive polysaccharides, the knowledge regarding their structures, bioactivities, and gut microbial metabolism is still limited. Therefore, in order to promote the application of sweet tea polysaccharide (STP) in the food industry, the pressurized hot water extraction (PHWE) of STP was optimized, and its structural properties and biological effects as well as microbial fermentation characteristics were investigated. The maximum extraction yield (4.64 % ± 0.03 %) of STP extracted by PHWE was obtained under the optimal conditions. Both homogalacturonan and arabinogalactan might exist as major polysaccharide fragments in STP. Additionally, STP exerted obviously in vitro antioxidant, anti-diabetic, and immunostimulatory effects, which might be related to its chemical properties, such as uronic acids, conjugated polyphenolics, and esterification degree. Furthermore, STP could be consumed by intestinal microbiota, and its fermentability was about 54 % at the end stage of fecal fermentation. Indeed, STP could modulate the microbial composition via improving the growth of several beneficial microbes, causing the release of beneficial short-chain fatty acids. Collectively, the findings indicate that the PHWE is an efficient method for extracting bioactive polysaccharides from sweet tea, and results can also provide a scientific basis for developing STP into functional foods or functional ingredients.


Assuntos
Polissacarídeos , Água , Fermentação , Polissacarídeos/química , Água/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chá/química
4.
Foods ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441556

RESUMO

Eight extraction technologies were used to extract sweet tea (Lithocarpus litseifolius (Hance) Chun) crude polysaccharides (STPs), and their chemical, structural, and biological properties were studied and compared. Results revealed that the compositions, structures, and biological properties of STPs varied dependent on different extraction technologies. Protein-bound polysaccharides and some hemicellulose could be extracted from sweet tea with diluted alkali solution. STPs extracted by deep-eutectic solvents and diluted alkali solution exhibited the most favorable biological properties. Moreover, according to the heat map, total phenolic content was most strongly correlated with biological properties, indicating that the presence of phenolic compounds in STPs might be the main contributor to their biological properties. To the best of our knowledge, this study reports the chemical, structural, and biological properties of STPs, and the results contribute to understanding the relationship between the chemical composition and biological properties of STPs.

5.
Foods ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681371

RESUMO

The present study aimed to explore the impacts of in vitro simulated saliva-gastrointestinal digestion on physicochemical and biological properties of the polyphenolic-protein-polysaccharide ternary complex (PPP) extracted from Hovenia dulcis. The results revealed that the in vitro digestion did remarkably affect physicochemical properties of PPP, such as content of reducing sugar release, content of bound polyphenolics, and molecular weight distribution, as well as ratios of compositional monosaccharides and amino acids. In particular, the content of bound polyphenolics notably decreased from 281.93 ± 2.36 to 54.89 ± 0.42 mg GAE/g, which might be the major reason for the reduction of bioactivities of PPP after in vitro digestion. Molecular weight of PPP also remarkably reduced, which might be attributed to the destruction of glycosidic linkages and the disruption of aggregates. Moreover, although biological activities of PPP obviously decreased after in vitro digestion, the digested PPP (PPP-I) also exhibited remarkable in vitro antioxidant and antiglycation activities, as well as in vitro inhibitory effects against α-glucosidase. These findings can help to well understand the digestive behavior of PPP extracted from H. dulcis, and provide valuable and scientific supports for the development of PPP in the industrial fields of functional food and medicine.

6.
Antioxidants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679697

RESUMO

Twelve representative edible Chinese teas (Camellia sinensis L.) from six categories (dark tea, black tea, oolong tea, white tea, yellow tea, and green tea) were selected in this study. Tea polysaccharides (TPs) were extracted with hot water, and their structural properties and biological activities, mainly antioxidant and anti-diabetic activities, were systematically evaluated. Results revealed that the extraction yields of TPs ranged from 1.81% to 6.38%, and Pu-erh tea polysaccharides had the highest extraction yield (6.38 ± 0.28%). The chemical compositions, molecular weight, and compositional monosaccharides of TPs varied among the six categories of tea. It appeared that all TPs were protein-bound acid heteropolysaccharides, and all TPs exhibited obvious antioxidant and anti-diabetic (e.g., α-glucosidase inhibitory and antiglycation) activities. Particularly, Pu-erh tea polysaccharides also contained the highest total phenolic and protein contents, and also exhibited the best antioxidant and anti-diabetic activities. Moreover, for the structural-function relationship, the heat map analysis found that total phenolic and protein contents in TPs were positively correlated with their antioxidant and anti-diabetic activities, indicating that the presence of phenolic compounds and proteins in the TPs might be the main contributors to their bioactivities. The conclusion from this study can help understand the structural-function relationship of crude tea polysaccharides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA