Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Bioorg Chem ; 133: 106389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731298

RESUMO

Garcinol is a polyisoprenylated benzophenone isolated from Garcinia. It has been reported to have a variety of intriguing biological effects, including anticancer, anti-inflammatory, and antioxidant capabilities. The purpose of this research is to thoroughly evaluate garcinol and a series of its analogues in terms of synthesis, structural diversity, biosynthesis, and potential for preventing carcinoma cell proliferation. Garcinopicrobenzophenone and eugeniaphenone, which contain a unique cyclobutyl unit at C-5, were initially synthesized using the procedures utilized in the synthesis of garcinol. All the natural analogs of garcinol were produced at completion of the synthesis, and their structures and absolute configurations were clarified. Based on the synthesis, a possible biogenetic synthesis pathway towards cambogin, 13,14-didehydroxyisogarcinol via O-cyclization, and garcinopicrobenzophenone or eugeniaphenone via C-cyclization was proposed. The cytotoxicity of polyisoprenylated benzophenones produced in our group was tested, and the structure-activity relationship was summarized. The mechanism by which garcinol, cambogin, and 21' induce apoptosis was studied. Cambogin and 21' were shown to have a greater capacity to cause apoptosis in pancreatic cancer BXPC3 cells, and the suppression of BXPC3 cells by 21' might be attributed to the target of STAT3 signaling. Garcinol could cause pyroptosis and apoptosis in pancreatic cancer cells at the same time, which was the first time that garcinol was identified as a possible chemotherapeutic agent that could significantly promote pyroptosis in cancer cells.


Assuntos
Antineoplásicos , Benzofenonas , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Apoptose , Benzofenonas/química , Benzofenonas/farmacologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Terpenos/farmacologia
2.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808289

RESUMO

Wireless sensor networks usually suffer from the issue of time synchronization discrepancy due to environmental effects or clock management collapse. This will result in time delays between the dynamic responses collected by wireless sensors. If non-synchronized dynamic response data are directly used for structural modal identification, it leads to the misestimation of modal parameters. To overcome the non-synchronization issue, this study proposes a time synchronization approach to detect and correct asynchronous dynamic responses based on frequency domain decomposition (FDD) with frequency-squeezing processing (FSP). By imposing the expected relationship between modal phase angles extracted from the first-order singular value spectrum, the time lags between different sensors can be estimated, and synchronization can be achieved. The effectiveness of the proposed approach is fully demonstrated by numerical and experimental studies, as well as field measurement of a large-span spatial structure. The results verify that the proposed approach is effective for the time synchronization of wireless accelerometer sensors.

3.
PLoS Pathog ; 15(12): e1008174, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830143

RESUMO

Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi's sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus.


Assuntos
Antineoplásicos/farmacologia , Linfoma de Efusão Primária/virologia , Terpenos/farmacologia , Latência Viral/efeitos dos fármacos , Animais , Antígenos Virais/efeitos dos fármacos , Antígenos Virais/metabolismo , Células HEK293 , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8 , Humanos , Camundongos , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Extratos Vegetais/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684870

RESUMO

Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Herpesviridae/efeitos dos fármacos , Animais , Produtos Biológicos/química , Farmacorresistência Viral , Herpesviridae/isolamento & purificação , Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Humanos
5.
Bioorg Chem ; 82: 274-283, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396061

RESUMO

Four pairs of previously undescribed caged xanthones (1-4) and twelve known caged xanthones (5-16) were isolated from the leaf extract of Garcinia bracteata. Their structures were unambiguously elucidated on the basis of spectroscopic methods. The planar structure and relative configuration of 1 was confirmed by X-ray crystallographic analysis. The enantiomers of compounds 1, 2, 4 were further resolved by semi-preparative chiral HPLC, and the absolute configurations of enantiomers of compounds 1 and 4 were determined by measurement and calculation of electronic circular dichroism (ECD) spectra and specific rotations. The inhibitory activities of the isolated compounds against human HeLa, A549, PC-3, HT-29, and WPMY-1 cell lines were assayed, and garcibractatin A (4) showed the most potent inhibitory activities in vitro with IC50 values from 1.11 to 2.93 µM. A preliminary structure-activity relationship has been discussed, and some helpful conclusions have been drawn.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Garcinia/química , Folhas de Planta/química , Xantonas/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estereoisomerismo , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
6.
Acta Pharmacol Sin ; 40(7): 929-937, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30333555

RESUMO

Lysosomes are the terminal organelles of the autophagic-endocytic pathway and play a key role in the degradation of autophagic contents. We previously reported that a natural compound oblongifolin C (OC) increased the number of autophagosomes and impaired the degradation of P62, most likely via suppression of lysosomal function and blockage of autophagosome-lysosome fusion. However, the precise mechanisms of how OC inhibits the lysosome-autophagy pathway remain unclear. In the present study, we investigated the effect of OC on transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, lysosomal function and autophagy. We showed that treatment with OC (15 µM) markedly enhanced the nuclear translocation of TFEB in HeLa cells, concomitantly reduced the interaction of TFEB with 14-3-3 proteins. We further demonstrated that OC caused significant inhibition of mTORC1 along with TFEB nuclear translocation, and OC-mediated TFEB nuclear translocation was dependent on mTORC1 suppression. Intriguingly, this increased nuclear TFEB was accompanied by reduced TFEB luciferase activity, increased lysosomal pH and impaired cathepsin enzyme activities. In HeLa cells, treatment with OC (7.5 µM) resulted in about 30% of cell death, whereas treatment with hydroxycitrate, a caloric restriction mimetic (20 µM) did not affect the cell viability. However, cotreatment with OC and hydroxycitrate caused significantly great cytotoxicity (>50%). Taken together, these results demonstrate that inhibition of lysosome function is mediated by OC, despite evident TFEB nuclear translocation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Terpenos/farmacologia , Animais , Antineoplásicos/farmacologia , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Núcleo Celular/metabolismo , Citratos/farmacologia , Frutas/química , Garcinia/química , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Terpenos/isolamento & purificação
7.
Planta Med ; 85(6): 444-452, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30650454

RESUMO

Six new prenylated xanthones (1: -6: ) and seventeen known xanthones were isolated from extracts of Garcinia bracteata leaves. Their structures were determined by extensive NMR and MS spectroscopic data analysis. The inhibitory activities of the isolates were assayed on HeLa, A549, PC-3, HT-29, and WPMY-1 cell lines. Compounds 1: and 15: -17: showed moderate inhibitory effects on tumor cell growth, with IC50s ranging from 3.7 to 14.7 µM.


Assuntos
Citotoxinas/isolamento & purificação , Garcinia/química , Folhas de Planta/química , Xantonas/isolamento & purificação , Linhagem Celular Tumoral/efeitos dos fármacos , Citotoxinas/farmacologia , Células HeLa/efeitos dos fármacos , Humanos , Células PC-3/efeitos dos fármacos , Relação Estrutura-Atividade , Xantonas/farmacologia
8.
J Nat Prod ; 81(11): 2582-2589, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30394090

RESUMO

The asymmetric total synthesis of five decarbonyl polycyclic polyprenylated acylphloroglucinols norsampsnes A (3) and B (4), garcinielliptones O (5) and N (6), and hyperscabrin A (7) is described. The synthesis to construct the core substituted cyclohexanone ring of these natural products was achieved by a key Dieckmann condensation. The chirality of the molecules was introduced by the stereoselective alkylation with Evans' oxazolidinones. The synthesis could be run on grams scale, and the Dieckmann condensation was investigated through the DFT calculations to help improve the yield of garcinielliptone O (5). Determination of the absolute configuration of garcinielliptones O (5) and N (6) was also achieved.


Assuntos
Floroglucinol/análogos & derivados , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Triterpenos/síntese química , Alquilação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Floroglucinol/síntese química , Floroglucinol/química , Floroglucinol/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Análise Espectral/métodos , Estereoisomerismo , Triterpenos/química , Triterpenos/farmacologia
9.
Acta Pharmacol Sin ; 38(2): 252-263, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27840412

RESUMO

Oblongifolin C (OC) and guttiferone K (GUTK) are two anticancer compounds extracted from Garcinia yunnanensis Hu, but they act by different mechanisms. In this study we investigated whether a combination of OC and GUTK (1:1 molar ratio) could produce synergistic anticancer effects against human colorectal cancer cells in vitro. For comparison, we also examined the anticancer efficacy of ethanol extracts from G yunnanensis fruit, which contain OC and GUTK up to 5%. Compared to OC and GUTK alone, the combination of OC and GUTK as well as the ethanol extracts more potently inhibited the cancer cell growth with IC50 values of 3.4 µmol/L and 3.85 µg/mL, respectively. Furthermore, OC and GUTK displayed synergistic inhibition on HCT116 cells: co-treatment with OC and GUTK induced more prominent apoptosis than treatment with either drug alone. Moreover, the combination of OC and GUTK markedly increased cleavage of casapse-3 and PARP, and enhanced cellular ROS production and increased JNK protein phosphorylation. In addition, the combination of OC and GUTK exerted stronger effects under nutrient-deprived conditions than in complete medium, suggesting that autophagy played an essential role in regulating OC- and GUTK-mediated cell death. OC and GUTK are the main components that contribute to the anticancer activity of G yunnanensis and the compounds have apoptosis-inducing effects in HCT116 cells in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/farmacologia , Garcinia/química , Terpenos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Benzofenonas/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Frutas/química , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Terpenos/isolamento & purificação
10.
Molecules ; 22(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333096

RESUMO

Molecularly imprinted polymers (MIPs) were synthesized and applied for the selective extraction of oblongifolin C (OC) from fruit extracts of Garcinia yunnanensis Hu. A series of experiments and computational approaches were employed to improve the efficiency of screening for optimal MIP systems in the study. The molar ratio (1:4) was eventually chosen based on the comparison of the binding energy of the complexes between the template (OC) and the functional monomers using density functional theory (DFT) at the RI-PBE-D3-gCP/def2-TZVP level of theory. The binding characterization and the molecular recognition mechanism of MIPs were further explained using the molecular modeling method along with NMR and IR spectra data. The reusability of this approach was demonstrated in over 20 batch rebinding experiments. A mass of 140.5 mg of OC (>95% purity) was obtained from the 5 g extracts, with 2 g of MIPs with the best binding properties, through a gradient elution program from 35% to 70% methanol-water solution. At the same time, another structural analog, 46.5 mg of guttiferone K (GK) (>88% purity), was also obtained by the gradient elution procedure. Our results showed that the structural analogs could be separated from the crude extracts by the molecularly imprinted solid-phase extraction (MISPE) using a gradient elution procedure for the first time.


Assuntos
Polímeros/síntese química , Extração em Fase Sólida/métodos , Terpenos/isolamento & purificação , Garcinia/química , Impressão Molecular/métodos , Estrutura Molecular , Polímeros/química , Solventes/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA