RESUMO
Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna-Matthews-Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.
RESUMO
We perform a beat-frequency-resolved analysis for two-dimensional electronic spectroscopy using a high-speed and stable 2D electronic spectrometer and few-cycle visible laser pulses to disentangle the vibrational coherences in an artificial fluorescent protein. We develop a highly stable ultrashort light source that generates 5.3-fs visible pulses with a pulse energy of 4.7 µJ at a repetition rate of 10 kHz using multi-plate pulse compression and laser filamentation in a gas cell. The above-5.3-fs laser pulses together with a high-speed multichannel detector enable us to measure a series of 2D electronic spectra, which are resolved in terms of beat frequency related to vibrational coherence. We successfully extract the discrete vibrational peaks behind the inhomogeneous broadening in the absorption spectra and the vibrational quantum beats of the excited electronic state behind the strong incoherent population background in the typical 2D electronic spectra.
RESUMO
Herein, we present a fragment-based approach for calculating the charged and neutral excited states in molecular systems, based on the many-body Green's function method within the GW approximation and the Bethe-Salpeter equation (BSE). The implementation relies on the many-body expansion of the total irreducible polarizability on the basis of fragment molecular orbitals. The GW quasi-particle energies in complex molecular environments are obtained by the GW calculation for the target fragment plus induced polarization contributions of the surrounding fragments at the static Coulomb-hole plus screened exchange level. In addition, we develop a large-scale GW/BSE method for calculating the delocalized excited states of molecular aggregates, based on the fragment molecular orbital method and the exciton model. The accuracy of fragment-based GW and GW/BSE methods was evaluated on molecular clusters and molecular crystals. We found that the accuracy of the total irreducible polarizability can be improved systematically by including two-body correction terms, and the fragment-based calculations can reasonably reproduce the results of the corresponding unfragmented calculations with a relative error of less than 100 meV. The proposed approach enables efficient excited-state calculations for large molecular systems with reasonable accuracy.
RESUMO
Predicting the charge-transfer (CT) excited states across the donor/acceptor (D/A) interface is essential for understanding the charge photogeneration process in an organic solar cell. Here, we present a fragment-based GW implementation that can be applied to a D/A interface structure and thus enables accurate determination of the CT states. The implementation is based on the fragmentation approximation of the polarization function and the combined GW and Coulomb-hole plus screened exchange approximations for self-energies. The fragment-based GW is demonstrated by application to the pentacene/C60 interface structure containing more than 2000 atoms. The CT excitation energies were estimated from the quasiparticle energies and electron-hole screened Coulomb interactions; the computed energies are in reasonable agreement with experimental estimates from the external quantum efficiency measurements. We highlight the impact of the induced polarization effects on the electron-hole energetics. The proposed fragment-based GW method offers a first-principles tool to compute the quasiparticle energies and electronic excitation energies of organic materials.
RESUMO
Predicting electronically excited states across electron-donor/electron acceptor interfaces is essential for understanding the charge photogeneration process in organic solar cells. However, organic solar cells are large and disordered systems, and their excited states cannot be easily accessed by conventional quantum chemistry approaches. Moreover, a large number of excited states must be obtained to fully understand the charge separation mechanism. Recently, we have developed a novel fragment-based excited state method which can efficiently calculate a large number of states in molecular aggregates. In this article, we demonstrate the large-scale excited-state calculations by investigating interfacial charge transfer (ICT) states across the electron-donor/electron acceptor interfaces. As the model systems, we considered the face-on and edge-on configurations of pentacene/C60 bilayer heterojunction structures. These model structures contain approximately 1.8 × 105 atoms, and their local interface regions containing 2000 atoms were treated quantum mechanically, embedded in the electrostatic potentials from the remaining parts. Therefore, the charge delocalization effect, structural disorder, and the resulting heterogeneous electrostatic and polarizable environments were taken into account in the excited-state calculations. The computed energies of the low-lying ICT states are in reasonable agreement with experimental estimates. By comparing the edge-on and face-on configurations of the pentacene/C60 interfaces, we discuss the influence of interfacial morphologies on the energetics and charge delocalization of ICT states. In addition, we present the detailed characterization of excited states and highlight the importance of hybridization effects between pentacene excited states and ICT states. The large-scale ab initio calculations for the interface systems enabled the exploration of the ICT states, leading to first-principles investigation of the charge separation mechanism in organic solar cells.
RESUMO
We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.
RESUMO
Integral equation theories provide an efficient route for computing the solvation free energy (SFE) of molecular systems in water. The accuracy of those theories is usually tested against small molecules via comparison of SFE with reference data. However, tests against larger molecules in the nanometer regime are scarce in literature despite recent applications to such systems. Here, we thus study the accuracy and validity of a commonly used integral equation theory, namely, a three-dimensional reference interaction site model (3D-RISM), by considering the following problems: (1) solvation of a small to large Lennard-Jones particle, (2) binding of planar hydrophobic systems with varying size and hydrophobicity, and (3) self-assembly of amphiphilic molecules into a nanocapsule. The energy representation method is also utilized for comparison. The results show that the 3D-RISM method works successfully for small molecules, while the accuracy degrades systematically with system size and hydrophobicity. The size-dependent error in SFE does not cancel adequately between two solute configurations, resulting in a substantial error in the free energy difference. It is also shown that the free energy profiles for hydrophobic association exhibit a fictitious high-energy barrier, suggesting that care must be taken for studying such systems. The numerical difficulties observed above are discussed based on the relation between hypernetted-chain approximation, classical density functional theory with quadratic expansion, and the size-dependent error arising from the cavity region of the system.
RESUMO
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale.
RESUMO
Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.
Assuntos
Chlorobi/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Fotossíntese , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Organelas/metabolismoRESUMO
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.
Assuntos
Chlorobi/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Simulação de Dinâmica Molecular , Anisotropia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Chlorobi/metabolismo , Chlorobi/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Compostos Orgânicos/químicaRESUMO
Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies' thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts - the reorganization shift - to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.
Assuntos
Elétrons , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Processos Estocásticos , Fônons , Teoria QuânticaRESUMO
We develop a bottom-up computational method for excited-state dynamics and time-resolved spectroscopy signals in molecular aggregates, on the basis of ab initio excited-state calculations. As an application, we consider the charge separation dynamics and pump-probe spectroscopy in the amorphous P3HT/PCBM blend. To simulate quantum dynamics and time-resolved spectroscopy, the model Hamiltonian for single-excitation and double-excitation manifolds was derived on the basis of fragment-based excited-state calculations within the GW approximation and the Bethe-Salpeter equation. After elucidating the energetics of the electron-hole separation and examining linear absorption spectrum, we investigated the quantum dynamics of exciton and charge carriers in comparison with the pump-probe transient absorption spectra. In particular, we introduced the pump-probe excited-state absorption (ESA) anisotropy as a spectroscopic signature of charge carrier dynamics after exciton dissociation. We found that the charge separation dynamics can be probed by the pump-probe ESA anisotropy dynamics after charge-transfer excitations. The present study provides the fundamental information for understanding the experimental spectroscopy signals, by elucidating the relationship between the excited states, the exciton and charge carrier dynamics, and time-resolved spectroscopy.
RESUMO
Molecular orientations and interfacial morphologies have critical effects on the electronic states of donor/acceptor interfaces and thus on the performance of organic photovoltaic devices. In this study, we explore the energy levels and charge-transfer states at the organic donor/acceptor interfaces on the basis of the fragment-based GW and Bethe-Salpeter equation approach. The face-on and edge-on orientations of pentacene/C60 bilayer heterojunctions have employed as model systems. GW+Bethe-Salpeter equation calculations were performed for the local interface structures in the face-on and edge-on bilayer heterojunctions, which contain approximately 2000 atoms. Calculated energy levels and charge-transfer state absorption spectra are in reasonable agreements with those obtained from experimental measurements. We found that the dependence of the energy levels on interfacial morphology is predominantly determined by the electrostatic contribution of polarization energy, while the effects of induction contribution in the edge-on interface are similar to those in the face-on. Moreover, the delocalized charge-transfer states contribute to the main absorption peak in the edge-on interface, while the face-on interface features relatively localized charge-transfer states in the main absorption peak. The impact of the interfacial morphologies on the polarization and charge delocalization effects is analyzed in detail.
RESUMO
Charge-transfer states in organic semiconductors play crucial roles in processes such as singlet fission and exciton dissociation at donor/acceptor interfaces. Recently, a time-resolved spectroscopy study of dinaphtho[2,3-b:2'3'-f]thieno[3,2-b]-thiophene (DNTT) thin films provided evidence for the formation of mixed Frenkel and charge-transfer excitons after the photoexcitation. Here, we investigate optical properties and excitation dynamics of the DNTT thin films by combining ab initio calculations and a stochastic Schrödinger equation. Our theory predicts that the low-energy Frenkel exciton band consists of 8-47% CT character. The quantum dynamics simulations show coherent dynamics of Frenkel and CT states in 50 fs after the optical excitation. We demonstrate the role of charge delocalization and localization in the mixing of CT states with Frenkel excitons as well as the role of their decoherence.
Assuntos
Semicondutores , Tiofenos/química , Elétrons , Luz , Modelos Moleculares , Processos Fotoquímicos , Teoria QuânticaRESUMO
Chlorosomes are likely the largest and most efficient natural light-harvesting photosynthetic antenna systems. They are composed of large numbers of bacteriochlorophylls organized into supramolecular aggregates. We explore the microscopic origin of the fast excitation energy transfer in the chlorosome using the recently resolved structure and atomistic-detail simulations. Despite the dynamical disorder effects on the electronic transitions of the bacteriochlorophylls, our simulations show that the exciton delocalizes over the entire aggregate in about 200 fs. The memory effects associated to the dynamical disorder assist the exciton diffusion through the aggregates and enhance the diffusion coefficients as a factor of 2 as compared to the model without memory. Furthermore, exciton diffusion in the chlorosome is found to be highly anisotropic with the preferential transfer toward the baseplate, which is the next functional element in the photosynthetic system.