Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265404

RESUMO

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos
2.
Trends Genet ; 39(3): 217-232, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642680

RESUMO

Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.


Assuntos
Montagem e Desmontagem da Cromatina , Genoma , Animais , Diferenciação Celular , Cromatina , Mamíferos/genética
3.
Genome Res ; 32(4): 629-642, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115371

RESUMO

The MYC oncogene encodes for the MYC protein and is frequently dysregulated across multiple cancer cell types, making it an attractive target for cancer therapy. MYC overexpression leads to MYC binding at active enhancers, resulting in a global transcriptional amplification of active genes. Because super-enhancers are frequently dysregulated in cancer, we hypothesized that MYC preferentially invades into super-enhancers and alters the cancer genome organization. To that end, we performed ChIP-seq, RNA-seq, circular chromosome conformation capture (4C-seq), and Spike-in Quantitative Hi-C (SIQHiC) on the U2OS osteosarcoma cell line with tetracycline-inducible MYC MYC overexpression in U2OS cells modulated histone acetylation and increased MYC binding at super-enhancers. SIQHiC analysis revealed increased global chromatin contact frequency, particularly at chromatin interactions connecting MYC binding sites at promoters and enhancers. Immunofluorescence staining showed that MYC molecules formed punctate foci at these transcriptionally active domains after MYC overexpression. These results demonstrate the accumulation of overexpressed MYC at promoter-enhancer hubs and suggest that MYC invades into enhancers through spatial proximity. At the same time, the increased protein-protein interactions may strengthen these chromatin interactions to increase chromatin contact frequency. CTCF siRNA knockdown in MYC-overexpressed U2OS cells demonstrated that removal of architectural proteins can disperse MYC and abrogate the increase in chromatin contacts. By elucidating the chromatin landscape of MYC-driven cancers, we can potentially target MYC-associated chromatin interactions for cancer therapy.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Genes myc , Sítios de Ligação , Linhagem Celular , Cromatina/genética , Regiões Promotoras Genéticas
4.
Blood ; 141(25): 3078-3090, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36796022

RESUMO

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Assuntos
Fatores de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Regulação para Baixo , Fatores de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Leucemia Mieloide Aguda/genética , Adenosina/metabolismo
5.
Nucleic Acids Res ; 51(1): 1-16, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697349

RESUMO

Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated ß-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.


Healthy and cancer cells harbor the same DNA sequence, but reactivation of the Human Telomerase Reverse Transcriptase (hTERT) gene is observed only in cancer cells. How does that happen was not known for over three decades of research? This study identifies a specific DNA structure that forms only in cancer cells and brings the necessary molecular machinery into the correct position to activate the hTERT gene. The detailed mechanism of hTERT activation provided in this study will be instrumental in designing cancer cell-specific hTERT inhibitors, especially since all the other ways of inhibiting telomerase failed in the clinic.


Assuntos
Neoplasias Colorretais , Telomerase , Humanos , Carcinogênese , Cromatina/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regiões Promotoras Genéticas , Telomerase/antagonistas & inibidores , Telomerase/genética , Transcrição Gênica
6.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36094071

RESUMO

The emerging ligation-free three-dimensional (3D) genome mapping technologies can identify multiplex chromatin interactions with single-molecule precision. These technologies not only offer new insight into high-dimensional chromatin organization and gene regulation, but also introduce new challenges in data visualization and analysis. To overcome these challenges, we developed MCIBox, a toolkit for multi-way chromatin interaction (MCI) analysis, including a visualization tool and a platform for identifying micro-domains with clustered single-molecule chromatin complexes. MCIBox is based on various clustering algorithms integrated with dimensionality reduction methods that can display multiplex chromatin interactions at single-molecule level, allowing users to explore chromatin extrusion patterns and super-enhancers regulation modes in transcription, and to identify single-molecule chromatin complexes that are clustered into micro-domains. Furthermore, MCIBox incorporates a two-dimensional kernel density estimation algorithm to identify micro-domains boundaries automatically. These micro-domains were stratified with distinctive signatures of transcription activity and contained different cell-cycle-associated genes. Taken together, MCIBox represents an invaluable tool for the study of multiple chromatin interactions and inaugurates a previously unappreciated view of 3D genome structure.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Genoma , Regulação da Expressão Gênica
7.
Nucleic Acids Res ; 50(13): 7326-7349, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776115

RESUMO

SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.


Assuntos
Retrovirus Endógenos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Retrovirus Endógenos/metabolismo , Genômica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Camundongos , Coesinas
8.
Brief Bioinform ; 22(2): 2073-2084, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227075

RESUMO

The development of deep sequencing technologies has led to the discovery of novel transcripts. Many in silico methods have been developed to assess the coding potential of these transcripts to further investigate their functions. Existing methods perform well on distinguishing majority long noncoding RNAs (lncRNAs) and coding RNAs (mRNAs) but poorly on RNAs with small open reading frames (sORFs). Here, we present DeepCPP (deep neural network for coding potential prediction), a deep learning method for RNA coding potential prediction. Extensive evaluations on four previous datasets and six new datasets constructed in different species show that DeepCPP outperforms other state-of-the-art methods, especially on sORF type data, which overcomes the bottleneck of sORF mRNA identification by improving more than 4.31, 37.24 and 5.89% on its accuracy for newly discovered human, vertebrate and insect data, respectively. Additionally, we also revealed that discontinuous k-mer, and our newly proposed nucleotide bias and minimal distribution similarity feature selection method play crucial roles in this classification problem. Taken together, DeepCPP is an effective method for RNA coding potential prediction.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Animais , Humanos , Fases de Leitura Aberta , RNA Longo não Codificante/genética , RNA Mensageiro/genética
9.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34263910

RESUMO

Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon usage.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Biologia Computacional/métodos , Éxons , Transcrição Gênica , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Histonas/metabolismo , Modelos Biológicos , Reprodutibilidade dos Testes
10.
Trends Genet ; 35(2): 145-158, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30577989

RESUMO

Chromatin interactions regulate gene expression by bringing distal regulatory elements, such as super-enhancers, to promoters in close spatial proximity. It has been recognized that in cancer, chromatin interactions can be dysregulated, leading to aberrant oncogene expression. Chromatin interactions may potentially serve as biomarkers, or be modulated via CRISPR therapy and small molecule inhibitors against transcription. However, these methods face challenges that must be resolved and raise questions for further research. Understanding chromatin interactions is essential for safety aspects of anticancer therapies, such as the mechanism of action of epigenetic regulators and transcription factors in cancer, and potential off-target effects arising from targeting super-enhancers and promoters. In this review article, we discuss how chromatin interactions and regulatory elements may become dysregulated in cancer, potential methods to target them for clinical therapy, and outline outstanding questions that require addressing before epigenetic therapies can translate to the clinic safely and effectively.


Assuntos
Elementos Facilitadores Genéticos/genética , Epigenômica , Neoplasias/genética , Fatores de Transcrição/genética , Cromatina/genética , Humanos , Regiões Promotoras Genéticas
11.
Gastroenterology ; 159(4): 1311-1327.e19, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619460

RESUMO

BACKGROUND & AIMS: We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS: We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS: We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS: In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.


Assuntos
Epigênese Genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Montagem e Desmontagem da Cromatina , Epigênese Genética/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , Carga Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Blood ; 133(23): 2507-2517, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952671

RESUMO

CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Granulócitos/metabolismo , Mielopoese/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Blood ; 134(3): 239-251, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076442

RESUMO

The oncogenic transcription factor TAL1 regulates the transcriptional program in T-ALL. ARID5B is one of the critical downstream targets of TAL1, which further activates the oncogenic regulatory circuit in T-ALL cells. Here, we elucidated the molecular functions of the noncoding RNA, ARID5B-inducing enhancer associated long noncoding RNA (ARIEL), in T-ALL pathogenesis. We demonstrated that ARIEL is specifically activated in TAL1 + T-ALL cases, and its expression is associated with ARID5B enhancer activity. ARIEL recruits mediator proteins to the ARID5B enhancer, promotes enhancer-promoter interactions, and activates the expression of ARID5B, thereby positively regulating the TAL1-induced transcriptional program and the MYC oncogene. The TAL1 complex coordinately regulates the expression of ARIEL Knockdown of ARIEL inhibits cell growth and survival of T-ALL cells in culture and blocks disease progression in a murine xenograft model. Our results indicate that ARIEL plays an oncogenic role as an enhancer RNA in T-ALL.


Assuntos
Carcinogênese/genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Marcação de Genes , Xenoenxertos , Humanos , Camundongos , Modelos Biológicos , Complexos Multiproteicos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Fatores de Transcrição/metabolismo
14.
Circulation ; 139(16): 1937-1956, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30717603

RESUMO

BACKGROUND: The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS: We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS: We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS: This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.


Assuntos
Estenose da Valva Aórtica/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Insuficiência Cardíaca/genética , Miócitos Cardíacos/fisiologia , Acetilação , Animais , Fator de Ligação a CCCTC/genética , Células Cultivadas , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Epigênese Genética , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Fisiológico
15.
Blood ; 132(12): 1304-1317, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30061158

RESUMO

DNA alterations have been extensively reported in multiple myeloma (MM); however, they cannot yet fully explain all the biological and molecular abnormalities in MM, which remains to this day an incurable disease with eventual emergence of refractory disease. Recent years have seen abnormalities at the RNA levels being reported to possess potential biological relevance in cancers. ADAR1-mediated A-to-I editing is an important posttranscriptional mechanism in human physiology, and the biological implication of its abnormality, especially at the global level, is underexplored in MM. In this study, we define the biological implications of A-to-I editing and how it contributes to MM pathogenesis. Here, we identified that the MM transcriptome is aberrantly hyperedited because of the overexpression of ADAR1. These events were associated with patients' survival independent of 1q21 amplifications and could affect patients' responsiveness to different treatment regimes. Our functional assays established ADAR1 to be oncogenic, driving cellular growth and proliferation in an editing-dependent manner. In addition, we identified NEIL1 (base-excision repair gene) as an essential and a ubiquitously edited ADAR1 target in MM. The recoded NEIL1 protein showed defective oxidative damage repair capacity and loss-of-function properties. Collectively, our data demonstrated that ADAR1-mediated A-to-I editing is both clinically and biologically relevant in MM. These data unraveled novel insights into MM molecular pathogenesis at the global RNA level.


Assuntos
Adenosina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Proteínas de Ligação a RNA/genética , Transcriptoma , Regulação para Cima , Animais , Linhagem Celular Tumoral , DNA Glicosilases/genética , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Prognóstico , Edição de RNA
16.
Gastroenterology ; 154(8): 2137-2151.e1, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29454790

RESUMO

BACKGROUND & AIMS: Long non-coding RNAs (lncRNAs) are expressed in tissue-specific pattern, but it is not clear how these are regulated. We aimed to identify squamous cell carcinoma (SCC)-specific lncRNAs and investigate mechanisms that control their expression and function. METHODS: We studied expression patterns and functions of 4 SCC-specific lncRNAs. We obtained 113 esophageal SCC (ESCC) and matched non-tumor esophageal tissues from a hospital in Shantou City, China, and performed quantitative reverse transcription polymerase chain reaction assays to measure expression levels of LINC01503. We collected clinical data from patients and compared expression levels with survival times. LINC01503 was knocked down using small interfering RNAs and oligonucleotides in TE7, TE5, and KYSE510 cell lines and overexpressed in KYSE30 cells. Cells were analyzed by chromatin immunoprecipitation sequencing, luciferase reporter assays, colony formation, migration and invasion, and mass spectrometry analyses. Cells were injected into nude mice and growth of xenograft tumors was measured. LINC01503 interaction with proteins was studied using fluorescence in situ hybridization, RNA pulldown, and RNA immunoprecipitation analyses. RESULTS: We identified a lncRNA, LINC01503, which is regulated by a super enhancer and is expressed at significantly higher levels in esophageal and head and neck SCCs than in non-tumor tissues. High levels in SCCs correlated with shorter survival times of patients. The transcription factor TP63 bound to the super enhancer at the LINC01503 locus and activated its transcription. Expression of LINC01503 in ESCC cell lines increased their proliferation, colony formation, migration, and invasion. Knockdown of LINC01503 in SCC cells reduced their proliferation, colony formation, migration, and invasion, and the growth of xenograft tumors in nude mice. Expression of LINC01503 in ESCC cell lines reduced ERK2 dephosphorylation by DUSP6, leading to activation of ERK signaling via MAPK. LINC01503 disrupted the interaction between EBP1 and the p85 subunit of PI3K, increasing AKT signaling. CONCLUSIONS: We identified an lncRNA, LINC01503, which is increased in SCC cells compared with non-tumor cells. Increased expression of LINC01503 promotes ESCC cell proliferation, migration, invasion, and growth of xenograft tumors. It might be developed as a biomarker of aggressive SCCs in patients.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , China , Elementos Facilitadores Genéticos/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Interferência de RNA , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955620

RESUMO

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Assuntos
DNA/genética , Enciclopédias como Assunto , Genoma Humano/genética , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética , Transcriptoma/genética , Alelos , Linhagem Celular , DNA Intergênico/genética , Elementos Facilitadores Genéticos , Éxons/genética , Perfilação da Expressão Gênica , Genes/genética , Genômica , Humanos , Poliadenilação/genética , Isoformas de Proteínas/genética , RNA/biossíntese , RNA/genética , Edição de RNA/genética , Splicing de RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA
19.
Nature ; 462(7269): 58-64, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19890323

RESUMO

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Genoma Humano/genética , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Reagentes de Ligações Cruzadas , Formaldeído , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transcrição Gênica , Ativação Transcricional
20.
EBioMedicine ; 102: 105057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490101

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Carcinogênese/genética , DNA , Proteínas Repressoras , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA