Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Biol Chem ; 285(47): 36818-27, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20837491

RESUMO

The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate's protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Ácido Oleico/química , Palmitatos/farmacologia , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Imunofluorescência , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Cancer Res ; 65(17): 7622-7, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140927

RESUMO

Adrenocortical cancer is a rare cancer with a very poor prognosis. The genetic alterations identified to date in adrenocortical tumors are limited. Activating mutations of the Wnt signaling pathway have been observed in more frequent cancers, particularly digestive tract tumors. We investigated whether Wnt pathway activation is involved in adrenocortical tumorigenesis. In a series of 39 adrenocortical tumors, immunohistochemistry revealed abnormal cytoplasmic and/or nuclear accumulation of beta-catenin in 10 of 26 adrenocortical adenomas and in 11 of 13 adrenocortical carcinomas. An activating somatic mutation of the beta-catenin gene was shown in 7 of 26 adrenocortical adenomas and in 4 of 13 adrenocortical carcinomas; these mutations were observed only in adrenocortical tumors with abnormal beta-catenin accumulation and most were point mutations altering the Ser45 of exon 3 (in the consensus GSK3-beta/CK1 phosphorylation site). Functional studies showed that the activating Ser45 beta-catenin mutation found in the adrenocortical cancer H295R cell line leads to constitutive activation of T-cell factor-dependent transcription. This is the first molecular defect to be reported with the same prevalence in both benign (27%) and malignant (31%) adrenocortical tumors. beta-Catenin mutations are also the most frequent genetic defect currently known in adrenocortical adenomas. In adrenocortical adenomas, beta-catenin alterations are more frequent in nonfunctioning tumors, suggesting that beta-catenin pathway activation might be mostly involved in the development of nonsecreting adrenocortical adenomas and adrenocortical carcinomas. The very frequent and substantial accumulation of beta-catenin in adrenocortical carcinomas suggests that other alterations might also be involved. This finding may contribute to new therapeutic approaches targeting the Wnt pathway in malignant adrenocortical tumors, for which limited medical therapy is available.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Transativadores/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Idoso , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Transdução de Sinais , Transativadores/metabolismo , Proteínas Wnt , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA