Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(11): 113502, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779410

RESUMO

Plasma assisted combustion is a very active research field due to the potential of using the technology to improve combustion efficiency and decrease pollutant emission by stabilizing lean burning flames. It has been shown in a number of studies that a small amount of electrical energy can be deposited in the flame by applying microwaves, resulting in enhanced flame propagation and thus improved flame stabilization and delayed lean blow-out. However, the effects have not yet been properly quantified since there are significant experimental challenges related to the determination of both the laminar burning velocity and the electric field strength. In the present work, a novel setup is described, where a well-defined burner system is coupled to a microwave cavity. The burner is of heat flux type, where a flat laminar flame is stabilized on a perforated burner head. The advantage of this burner for the current use is that the method and related uncertainties are well studied and quantified, and the geometry is suitable for coupling with the microwave cavity. The setup, experimental procedure, and data analysis are described in detail in this article. Laminar burning velocity for a methane-air flame at ϕ = 0.7 is determined to certify that the burner works properly in the microwave cavity. The flame is then exposed to pulsed microwaves at 1 kHz with a pulse duration of 50 µs. The laminar burning velocity at these conditions is determined to be 18.4 cm/s, which is an increase by about 12% compared to the laminar burning velocity that is measured without microwave exposure. The setup shows potential for further investigations of lean flames subjected to various microwave pulse sequences. The data are of high quality with well-defined uncertainties and are therefore suitable to use for validation of chemical kinetics models.

2.
Flow Turbul Combust ; 99(2): 385-409, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30069155

RESUMO

Large Eddy Simulations (LES) of a swirl-stabilized natural gas-air flame in a laboratory gas turbine combustor is performed using six different LES combustion models to provide a head-to-head comparative study. More specifically, six finite rate chemistry models, including the thickened flame model, the partially stirred reactor model, the approximate deconvolution model and the stochastic fields model have been studied. The LES predictions are compared against experimental data including velocity, temperature and major species concentrations measured using Particle Image Velocimetry (PIV), OH Planar Laser-Induced Fluorescence (OH-PLIF), OH chemiluminescence imaging and one-dimensional laser Raman scattering. Based on previous results a skeletal methane-air reaction mechanism based on the well-known Smooke and Giovangigli mechanism was used in this work. Two computational grids of about 7 and 56 million cells, respectively, are used to quantify the influence of grid resolution. The overall flow and flame structures appear similar for all LES combustion models studied and agree well with experimental still and video images. Takeno flame index and chemical explosives mode analysis suggest that the flame is premixed and resides within the thin reaction zone. The LES results show good agreement with the experimental data for the axial velocity, temperature and major species, but differences due to the choice of LES combustion model are observed and discussed. Furthermore, the intrinsic flame structure and the flame dynamics are similarly predicted by all LES combustion models examined. Within this range of models, there is no strong case for deciding which model performs the best.

3.
Philos Trans A Math Phys Eng Sci ; 367(1899): 2957-69, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19531515

RESUMO

Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA