Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Genet ; 16(11): e1009121, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166278

RESUMO

In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Xenopus/genética , Animais , Feminino , Aptidão Genética , Gana , Masculino , Recombinação Genética
2.
Mol Ecol ; 31(6): 1853-1863, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060220

RESUMO

Differences in allele frequencies at autosomal genes between males and females in a population can result from two scenarios. First, unresolved sexual conflict over survival can produce allelic differentiation between the sexes. However, given the substantial mortality costs required to produce allelic differences between males and females at each generation, it remains unclear how many loci within the genome experience significant sexual conflict over survival. Alternatively, recent studies have shown that similarity between autosomal and Y sequences can create perceived allelic differences between the sexes. However, Y duplications are most likely in species with large nonrecombining regions, in part because they simply represent larger targets for duplications. We assessed the genomes of 120 wild-caught guppies, which experience extensive predation- and pathogen-induced mortality and have a relatively small ancestral Y chromosome. We identified seven autosomal genes that show allelic differences between male and female adults. Five of these genes show clear evidence of whole or partial gene duplication between the Y chromosome and the autosomes. The remaining two genes show evidence of partial homology to the Y. Overall, our findings suggest that the guppy genome experiences a very low level of unresolved sexual conflict over survival, and instead the Y chromosome, despite its small ancestral size and recent origin, may nonetheless accumulate genes with male-specific functions.


Assuntos
Poecilia , Animais , Feminino , Duplicação Gênica , Genoma , Masculino , Poecilia/genética , Comportamento Predatório , Cromossomo Y/genética
3.
J Evol Biol ; 35(12): 1777-1790, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054077

RESUMO

In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.


Assuntos
Genômica , Cromossomos Sexuais , Masculino , Animais , Feminino , Xenopus laevis/genética , Cromossomos Sexuais/genética , Genoma , Evolução Molecular , Cromossomo X
4.
Mol Biol Evol ; 37(3): 799-810, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710681

RESUMO

Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.


Assuntos
Pipidae/fisiologia , Cromossomos Sexuais/genética , Animais , Evolução Biológica , Evolução Molecular , Feminino , Deriva Genética , Masculino , Fenótipo , Pipidae/genética , Recombinação Genética , Seleção Genética , Processos de Determinação Sexual , Diferenciação Sexual
5.
J Evol Biol ; 31(12): 1945-1958, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30341989

RESUMO

Whole genome duplication (WGD), the doubling of the nuclear DNA of a species, contributes to biological innovation by creating genetic redundancy. One mode of WGD is allopolyploidization, wherein each genome from two ancestral species becomes a 'subgenome' of a polyploid descendant species. The evolutionary trajectory of a duplicated gene that arises from WGD is influenced both by natural selection that may favour redundant, new or partitioned functions, and by gene silencing (pseudogenization). Here, we explored how these two phenomena varied over time and within allopolyploid genomes in several allotetraploid clawed frog species (Xenopus). Our analysis demonstrates that, across these polyploid genomes, purifying selection was greatly relaxed compared to a diploid outgroup, was asymmetric between each subgenome, and that coding regions are shorter in the subgenome with more relaxed purifying selection. As well, we found that the rate of gene loss was higher in the subgenome under weaker purifying selection and that this rate has remained relatively consistent over time after WGD. Our findings provide perspective from recently evolved vertebrates on the evolutionary forces that likely shape allopolyploid genomes on other branches of the tree of life.


Assuntos
Evolução Molecular , Poliploidia , Xenopus/genética , Animais , Genoma , Modelos Genéticos , Filogenia , Seleção Genética , Fatores de Tempo
7.
Mol Ecol ; 24(4): 909-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25583226

RESUMO

The African clawed frog Xenopus laevis has a large native distribution over much of sub-Saharan Africa and is a model organism for research, a proposed disease vector, and an invasive species. Despite its prominent role in research and abundance in nature, surprisingly little is known about the phylogeography and evolutionary history of this group. Here, we report an analysis of molecular variation of this clade based on 17 loci (one mitochondrial, 16 nuclear) in up to 159 individuals sampled throughout its native distribution. Phylogenetic relationships among mitochondrial DNA haplotypes were incongruent with those among alleles of the putatively female-specific sex-determining gene DM-W, in contrast to the expectation of strict matrilineal inheritance of both loci. Population structure and evolutionarily diverged lineages were evidenced by analyses of molecular variation in these data. These results further contextualize the chronology, and evolutionary relationships within this group, support the recognition of X. laevis sensu stricto, X. petersii, X. victorianus and herein revalidated X. poweri as separate species. We also propose that portions of the currently recognized distributions of X. laevis (north of the Congo Basin) and X. petersii (south of the Congo Basin) be reassigned to X. poweri.


Assuntos
Evolução Biológica , Genética Populacional , Filogenia , Xenopus laevis/classificação , África Subsaariana , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Loci Gênicos , Haplótipos , Padrões de Herança , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
8.
Psychiatry Res ; 335: 115859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574700

RESUMO

Little is known about the effects of common daily experiences in patients with major depressive disorder (MDD). The Daily Hassles and Uplifts Scale (HUPS) was assessed in 142 treatment-naïve adult MDD outpatients randomized to 12 weeks of treatment with either antidepressant medication (ADM) or Cognitive Behavior Therapy (CBT). Three HUPS measures were analyzed: hassle frequency (HF), uplift frequency (UF), and the mean hassle intensity to mean uplift intensity ratio (MHI:MUI). Remission after treatment was not predicted by these baseline HUPS measures and did not moderate outcomes by treatment type. In contrast, HUPS measures significantly changed with treatment and were impacted by remission status. Specifically, HF and MHI:MUI decreased and UF increased from baseline to week 12, with remission leading to significantly greater decreases in HF and MHI:MUI compared to non-remission. ADM-treated patients demonstrated significant improvements on all three HUPS measures regardless of remission status. In contrast, remitters to CBT demonstrated significant improvements in HF and MHI:MUI but not UF; among CBT non-remitters the only significant change was a reduction in HF. The changes in HUPS measures are consistent with how affective biases are impacted by treatments and support the potential value of increasing attention to positive events in CBT.


Assuntos
Terapia Cognitivo-Comportamental , Transtorno Depressivo Maior , Adulto , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/uso terapêutico , Resultado do Tratamento
9.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688138

RESUMO

There is a dearth of adhesive systems capable of forming stable bonds between restorative materials and tooth surfaces. To address the concern, this study determined the effects of using methacrylate-functionalized boron nitride nanosheets (BNNSs) in a polymeric dental adhesive system. The bisphenol A glycidyl dimethacrylate (BisGMA):2 hydroxyethyl methacrylate (HEMA) (60:40) adhesive monomer blend with a photoinitiator was filled with 0 wt% (control), 0.1 wt%, and 1 wt% BNNSs and light cured. Fourier transform infrared spectroscopy was performed to determine the conversion degree of monomer double bonds (DoC). Water absorption and solubility were measured. Flexural strength and Youngs's modulus were evaluated to determine the mechanical properties of the composite adhesive system. Finally, dentin bond strength degradation and fracture mode were quantified with a microtensile bond test to confirm the bonding ability of the developed adhesive system. Results showed that the incorporation of BNNSs increased DoC (9.8% and 5.4% for 0.1 and 1 wt%, respectively), but it did not affect water sorption (101.9-119.72 (µg/mm3)), solubility (2.62-5.54 (µg/mm3)), Young's modulus (529.1-1716.1 MPa), or microtensile bond strength (46.66-54.72 MPa). Further studies are needed with varying BNNS loading percentages from 0.1 wt% to 1 wt% in order to more comprehensively determine the effect of BNNSs on dental adhesives.

10.
Curr Oncol ; 29(4): 2630-2643, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448189

RESUMO

Background: Despite meticulous surgery for non-small cell lung cancer (NSCLC), relapse is as high as 70% at 5 years. Many institutions do not conduct reflexive molecular testing on early stage specimens, although targeted gene therapy may extend life by years in the event of recurrence. This ultimately delays definitive treatment with additional biopsy risking suboptimal tissue acquisition and quality for molecular testing. Objective: To compare molecular profiles of genetic alterations in early and late NSCLC to provide evidence that reflexive molecular testing provides clinically valuable information. Methods: A single-center propensity matched retrospective analysis was conducted using prospectively collected data. Adults with early and late-stage NSCLC had tissue subject to targeted panel-based NGS. Frequencies of putative drivers were compared, with 1:3 matching on the propensity score; p < 0.05 deemed statistically significant. Results: In total, 635 NSCLC patients underwent NGS (59 early, 576 late); 276 (43.5%) females; age 70.9 (±10.2) years; never smokers 140 (22.0%); 527 (83.0%) adenocarcinomas. Unadjusted frequencies of EGFR mutations were higher in the early cohort (30% vs. 18%). Following adjustment for sex and smoking status, similar frequencies for both early and late NSCLC were observed for variants in EGFR, KRAS, ALK, MET, and ROS1. Conclusion: The frequency of clinically actionable variants in early and late-stage NSCLC was found to be similar, providing evidence that molecular profiling should be performed on surgical specimens. This pre-determined profile is essential to avoid treatment delay for patients who will derive clinical benefit from targeted systemic therapy, in the high likelihood of subsequent relapse.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Masculino , Análise por Pareamento , Recidiva Local de Neoplasia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Estudos Retrospectivos
11.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200095, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34247503

RESUMO

The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual , Transcrição Gênica , Xenopus/genética , Animais , Feminino , Masculino , Caracteres Sexuais
12.
Nat Ecol Evol ; 5(7): 939-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958755

RESUMO

Loss of recombination between sex chromosomes often depletes Y chromosomes of functional content and genetic variation, which might limit their potential to generate adaptive diversity. Males of the freshwater fish Poecilia parae occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph uses a different complex reproductive strategy and morphs differ dramatically in colour, body size and mating behaviour. Morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, which encode the complex male morph characteristics. Here, we examine Y diversity in natural populations of P. parae. Using linked-read sequencing on multiple P. parae females and males of all five morphs, we find that the genetic architecture of the male morphs evolved on the Y chromosome after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs, we show that, although the Ys of the three minor morphs that differ in colour are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behaviour. Altogether, our results suggest that the Y chromosome is able to overcome the constraints of recombination loss to generate extreme diversity, resulting in five discrete Y chromosomes that control complex reproductive strategies.


Assuntos
Poecilia , Animais , Feminino , Água Doce , Masculino , Poecilia/genética , Polimorfismo Genético , Reprodução/genética , Cromossomo Y/genética
13.
Genome Biol Evol ; 12(6): 750-763, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315410

RESUMO

Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.


Assuntos
Evolução Biológica , Cromossomos Sexuais , Animais , Cromossomos de Plantas , Mecanismo Genético de Compensação de Dose , Variação Genética , Recombinação Genética , Seleção Genética
14.
PLoS One ; 14(9): e0220892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509539

RESUMO

A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.


Assuntos
Biodiversidade , Xenopus/classificação , Animais , Sequência Conservada , Código de Barras de DNA Taxonômico , Evolução Molecular , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Anatômicos , Filogenia , Microtomografia por Raio-X , Xenopus/anatomia & histologia
15.
Genome Biol Evol ; 10(3): 742-755, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608717

RESUMO

There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.


Assuntos
Evolução Biológica , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Variação Genética/genética , Genoma , Masculino , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
16.
J Bronchology Interv Pulmonol ; 25(1): 25-30, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29261577

RESUMO

BACKGROUND: Widespread use of talc pleurodesis remains controversial for many providers concerned by adverse events such as respiratory failure, which are sometimes fatal. Particle talc size has been implicated in these adverse effects, mainly on the basis of animal studies utilizing large amounts of talc or in observational studies performed on different continents with different talc preparations and doses. Our aim was to determine the particle size and distribution of only the commercially available US-talc preparations and whether the fluid content can affect this distribution. METHODS: Commercially available US talc was evaluated under scanning electron microscopy and dynamic light scattering (DLS). Distribution of talc particle size was obtained in saline and various protein-based solutions. RESULTS: Talc particle size by DLS was performed with commercially available Sterile Talc Powder and Sclerosol Intrapleural Aerosol. Sterile Talc Powder demonstrated a median diameter of 26.57 µm with a range of particle sizes from 0.399 µm to 100.237 µm. Sclerosol demonstrated a median diameter of 24.49 µm with a range of particle sizes from 0.224 µm to 100.237 µm. The exposure of talc to a protein rich environment (bovine serum albumin and human pleural fluid) led to the development of measureable, new, larger aggregated particle (>100 µm). CONCLUSIONS: Currently available US talc seems to have size characteristics similar to previous described "graded" talc preparations. The exposure of talc to a protein rich environment seems to modify the overall distribution of talc particle size when examined by DLS.


Assuntos
Tamanho da Partícula , Talco , Albuminas , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica de Varredura , Pleurodese , Estados Unidos
17.
Sci Rep ; 7(1): 1091, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439068

RESUMO

The Cape platanna, Xenopus gilli, an endangered frog, hybridizes with the African clawed frog, X. laevis, in South Africa. Estimates of the extent of gene flow between these species range from pervasive to rare. Efforts have been made in the last 30 years to minimize hybridization between these two species in the west population of X. gilli, but not the east populations. To further explore the impact of hybridization and the efforts to minimize it, we examined molecular variation in one mitochondrial and 13 nuclear genes in genetic samples collected recently (2013) and also over two decades ago (1994). Despite the presence of F 1 hybrids, none of the genomic regions we surveyed had evidence of gene flow between these species, indicating a lack of extensive introgression. Additionally we found no significant effect of sampling time on genetic diversity of populations of each species. Thus, we speculate that F 1 hybrids have low fitness and are not backcrossing with the parental species to an appreciable degree. Within X. gilli, evidence for gene flow was recovered between eastern and western populations, a finding that has implications for conservation management of this species and its threatened habitat.


Assuntos
Quimera/genética , Variação Genética , Xenopus/genética , Animais , Fluxo Gênico , Genômica , África do Sul
18.
G3 (Bethesda) ; 6(11): 3625-3633, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605520

RESUMO

Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles.

19.
Chem Mater ; 20(17): 5491-5499, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20090854

RESUMO

Layered α-zirconium(IV) phosphonates were prepared from novel ether-terminal alkyl phosphonic acids, providing nanoplatelets with brush-like polar surfaces. The precursor materials were characterized by NMR, mass spectrometry, and elemental analysis. The derived nanoparticles were examined by XRD, TEM, TGA, and elemental analysis. The experimental compositions were slightly rich in organophosphorus content. In general, the layered materials had good crystallinity, with layer reflections appearing up to (005) and d-spacings consistent with the anticipated α-phase structure. Computer simulations suggest that tailored surface chemistries, including ether functionalities, will offer favorable thermodynamic interactions with polyester polymer matrices.

20.
J Biomed Mater Res ; 63(1): 31-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11787026

RESUMO

The purpose of this study was to explore the effects of changes in Type I collagen on the viscoelasticity of bone. Bone coupons were heated at either 100 or 200 degrees C to induce the thermal denaturation of Type I collagen. Half of these specimens were rehydrated after heat treatment; the other half were tested in a dry condition. The degree of denatured collagen (DC%) was analyzed by a selective digestion technique with the use of alpha-chymotrypsin. Isothermal (37 degrees C) and variable temperature tests (scans from 35 to 200 degrees C) were performed with the use of a dynamic mechanical analyzer to evaluate changes in bone viscoelastic properties as a function of collagen damage, specifically, changes in the loss factor (tan delta) and storage modulus (E') were assessed. Significant collagen denaturation occurred only when bone was heated at 200 degrees C irrespective of the hydration condition. Also, DC% did not show a significant effect on tan delta. However, higher values of tan delta were observed in wet samples compared to dry specimens. The temperature-scan tests revealed that the hydration condition, but not DC%, significantly affected the behavior of tan delta. However, E' was not strongly influenced either by DC% or by water content. These results suggest that at a constant frequency the denaturation of collagen triple-helical molecules may have few effects on the viscoelasticity of bone, but moisture may play a prominent role in determining this property.


Assuntos
Osso e Ossos/química , Colágeno/química , Fenômenos Biomecânicos , Água Corporal , Quimotripsina/farmacologia , Colágeno/efeitos dos fármacos , Dessecação , Elasticidade , Temperatura Alta , Humanos , Desnaturação Proteica , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA