Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
2.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
3.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649874

RESUMO

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteogenômica , Adenocarcinoma de Pulmão/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica , Fenótipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
4.
Cell ; 183(7): 1962-1985.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33242424

RESUMO

We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
5.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675502

RESUMO

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Neoplasias/genética , Proteogenômica , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Intervalo Livre de Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Fosforilação Oxidativa , Fosforilação/genética , Transdução de Sinais/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Sequenciamento do Exoma
7.
Immunity ; 52(6): 910-941, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32505227

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Animais , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Memória Imunológica , Inflamação/imunologia , Inflamação/virologia , Linfócitos/imunologia , Células Mieloides/imunologia , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , Pneumonia Viral/terapia , SARS-CoV-2
8.
Mol Psychiatry ; 28(8): 3355-3364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37528227

RESUMO

Lapses in inhibitory control have been linked to relapse in human drug addiction. Evidence suggests differences in inhibitory control depending on abstinence duration, but the underlying neural mechanisms remain unknown. We hypothesized that early abstinence (2-5 days) would be characterized by the strongest impairments of inhibitory control and most wide-spread deviations in resting-state functional connectivity of brain networks, while longer-term abstinence (>30 days) would be characterized by weaker impairments as compared to healthy controls. In this laboratory-based cross-sectional study, we compared individuals with Cocaine Use Disorder (iCUD) during early (cocaine urine-positive: N = 19, iCUD+; 32% female; mean age: 46.8 years) and longer-term abstinence (cocaine urine-negative: N = 29, iCUD-; 15% female; mean age: 46.6 years) to healthy controls (N = 33; 24% female; mean age: 40.9 years). We compared the groups on inhibitory control performance (Stop-Signal Task) and, using a whole-brain graph theory analysis (638 region parcellation) of functional magnetic resonance imaging (fMRI) data, we tested for group differences in resting-state brain function (local/global efficiency). We characterized how resting-state brain function was associated with inhibitory control performance within iCUD. Inhibitory control performance was worst in the early abstinence group, and intermediate in the longer-term abstinence group, as compared to the healthy control group (P < 0.01). More recent use of cocaine (CUD+ > CUD- > healthy controls) was characterized by decreased efficiency in fronto-temporal and subcortical networks (primarily in the salience, semantic, and basal ganglia networks) and increased efficiency in visual networks. Importantly, a similar functional connectivity pattern characterized impaired inhibitory control performance within iCUD (all brain analyses P < 0.05, FWE-corrected). Together, we demonstrated that a similar pattern of systematic and widespread deviations in resting-state brain efficiency, extending beyond the networks commonly investigated in human drug addiction, is linked to both abstinence duration and inhibitory control deficits in iCUD.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Masculino , Estudos Transversais , Encéfalo/patologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
9.
Nucleic Acids Res ; 47(W1): W142-W150, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114925

RESUMO

Humans vary considerably both in their baseline and activated immune phenotypes. We developed a user-friendly open-access web portal, ImmuneRegulation, that enables users to interactively explore immune regulatory elements that drive cell-type or cohort-specific gene expression levels. ImmuneRegulation currently provides the largest centrally integrated resource on human transcriptome regulation across whole blood and blood cell types, including (i) ∼43,000 genotyped individuals with associated gene expression data from ∼51,000 experiments, yielding genetic variant-gene expression associations on ∼220 million eQTLs; (ii) 14 million transcription factor (TF)-binding region hits extracted from 1945 ChIP-seq studies; and (iii) the latest GWAS catalog with 67,230 published variant-trait associations. Users can interactively explore associations between queried gene(s) and their regulators (cis-eQTLs, trans-eQTLs or TFs) across multiple cohorts and studies. These regulators may explain genotype-dependent gene expression variations and be critical in selecting the ideal cohorts or cell types for follow-up studies or in developing predictive models. Overall, ImmuneRegulation significantly lowers the barriers between complex immune regulation data and researchers who want rapid, intuitive and high-quality access to the effects of regulatory elements on gene expression in multiple studies to empower investigators in translating these rich data into biological insights and clinical applications, and is freely available at https://immuneregulation.mssm.edu.


Assuntos
Células Sanguíneas/imunologia , Sistema Imunitário , Internet , Sequências Reguladoras de Ácido Nucleico/genética , Transcriptoma/genética , Navegador , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Imunidade/genética
10.
Proteomics ; 20(21-22): e2000043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32358997

RESUMO

To better understand the molecular basis of cancer, the NCI's Clinical Proteomics Tumor Analysis Consortium (CPTAC) has been performing comprehensive large-scale proteogenomic characterizations of multiple cancer types. Gene and protein regulatory networks are subsequently being derived based on these proteogenomic profiles, which serve as tools to gain systems-level understanding of the molecular regulatory factories underlying these diseases. On the other hand, it remains a challenge to effectively visualize and navigate the resulting network models, which capture higher order structures in the proteogenomic profiles. There is a pressing need to have a new open community resource tool for intuitive visual exploration, interpretation, and communication of these gene/protein regulatory networks by the cancer research community. In this work, ProNetView-ccRCC (http://ccrcc.cptac-network-view.org/), an interactive web-based network exploration portal for investigating phosphopeptide co-expression network inferred based on the CPTAC clear cell renal cell carcinoma (ccRCC) phosphoproteomics data is introduced. ProNetView-ccRCC enables quick, user-intuitive visual interactions with the ccRCC tumor phosphoprotein co-expression network comprised of 3614 genes, as well as 30 functional pathway-enriched network modules. Users can interact with the network portal and can conveniently query for association between abundance of each phosphopeptide in the network and clinical variables such as tumor grade.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Redes Reguladoras de Genes , Humanos , Internet
11.
Hum Genet ; 137(4): 343-355, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29705978

RESUMO

While increasingly large reference panels for genome-wide imputation have been recently made available, the degree to which imputation accuracy can be enhanced by population-specific reference panels remains an open question. Here, we sequenced at full-depth (≥ 30×), across two platforms (Illumina X Ten and Complete Genomics, Inc.), a moderately large (n = 738) cohort of samples drawn from the Ashkenazi Jewish population. We developed a series of quality control steps to optimize sensitivity, specificity, and comprehensiveness of variant calls in the reference panel, and then tested the accuracy of imputation against target cohorts drawn from the same population. Quality control (QC) thresholds for the Illumina X Ten platform were identified that permitted highly accurate calling of single nucleotide variants across 94% of the genome. QC procedures also identified numerous regions that are poorly mapped using current reference or alternate assemblies. After stringent QC, the population-specific reference panel produced more accurate and comprehensive imputation results relative to publicly available, large cosmopolitan reference panels, especially in the range of rare variants that may be most critical to further progress in mapping of complex phenotypes. The population-specific reference panel also permitted enhanced filtering of clinically irrelevant variants from personal genomes.


Assuntos
Variação Genética/genética , Judeus/genética , Padrões de Referência , Sequenciamento Completo do Genoma/normas , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos
12.
Int J Mol Sci ; 17(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472327

RESUMO

Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Algoritmos , Bases de Dados de Proteínas , Humanos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
13.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377179

RESUMO

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Assuntos
Apolipoproteínas , Lipocalinas , Humanos , Camundongos , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Apolipoproteínas M , Inflamação , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina
14.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386728

RESUMO

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II , Vigilância Imunológica , Perda de Heterozigosidade , Neoplasias Pulmonares , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Macrófagos Alveolares/imunologia , Fatores de Risco , Fumar/imunologia , Vigilância Imunológica/genética , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
15.
J Thorac Oncol ; 18(1): 31-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243387

RESUMO

We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Predisposição Genética para Doença , Patologia Molecular , Detecção Precoce de Câncer/métodos , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/epidemiologia , Carcinoma de Pequenas Células do Pulmão/genética
16.
NPJ Precis Oncol ; 7(1): 13, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707626

RESUMO

Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA repair (OR = 1.50; p-value = 8.30e-07; 95% CI: 1.28-1.77), cancer predisposition (OR = 1.51; p-value = 4.58e-08; 95% CI: 1.30-1.75), and somatic cancer drivers (OR = 1.46; p-value = 4.04e-06; 95% CI: 1.24-1.72). Furthermore, personal RDV load in these gene-sets associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.

17.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624910

RESUMO

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Assuntos
Antígenos CD28 , Fator 1 de Transcrição de Linfócitos T , Fator 1 de Transcrição de Linfócitos T/genética , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Diferenciação Celular , Fatores de Transcrição
18.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582339

RESUMO

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Assuntos
Neoplasias , Proteogenômica , Humanos , Proteômica , Genômica , Neoplasias/genética , Perfilação da Expressão Gênica
19.
Alcohol Clin Exp Res ; 36(10): 1688-700, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22486438

RESUMO

BACKGROUND: Chronic alcohol exposure produces neuroadaptation, which increases the risk of cellular excitotoxicity and autonomic dysfunction during withdrawal. The temporal progression and regulation of the gene expression that contributes to this physiologic and behavioral phenotype is poorly understood early in the withdrawal period. Further, it is unexplored in the dorsal vagal complex (DVC), a brainstem autonomic regulatory structure. METHODS: We use a quantitative polymerase chain reaction platform to precisely and simultaneously measure the expression of 145 neuromodulatory genes in more than 100 rat DVC samples from control, chronically alcohol-exposed, and withdrawn rats. To gain insight into the dynamic progression and regulation of withdrawal, we focus on the expression of a subset of functionally relevant genes during the first 48 hours, when behavioral symptoms are most severe. RESULTS: In the DVC, expression of this gene subset is essentially normal in chronically alcohol-exposed rats. However, withdrawal results in rapid, large-magnitude expression changes in this group. We observed differential regulation in 86 of the 145 genes measured (59%), some as early as 4 hours into withdrawal. Time series measurements (4, 8, 18, 32, and 48 hours after alcohol removal) revealed dynamic expression responses in immediate early genes, γ-aminobutyric acid type A, ionotropic glutamate, and G-protein coupled receptors and the Ras/Raf signaling pathway. Together, these changes elucidate a complex, temporally coordinated response that involves correlated expression of many functionally related groups. In particular, the expression patterns of Gabra1, Grin2a, Grin3a, and Grik3 were tightly correlated. These receptor subunits share overrepresented transcription factor binding sites for Pax-8 and other transcription factors, suggesting a common regulatory mechanism and a role for these transcription factors in the regulation of neurotransmission within the first 48 hours of alcohol withdrawal. CONCLUSIONS: Expression in this gene set is essentially normal in the alcohol-adapted DVC, but withdrawal results in immediate, large-magnitude, and dynamic changes. These data support both increased research focus on the biological ramifications of alcohol withdrawal and enable novel insights into the dynamic withdrawal expression response in this understudied homeostatic control center.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Perfilação da Expressão Gênica , Homeostase/genética , Neurotransmissores/genética , Síndrome de Abstinência a Substâncias/genética , Nervo Vago/fisiologia , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/fisiologia , Masculino , Neurotransmissores/biossíntese , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo
20.
Front Bioinform ; 22022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35647580

RESUMO

How we interact with computer graphics has not changed significantly from viewing 2D text and images on a flatscreen since their invention. Yet, recent advances in computing technology, internetworked devices and gaming are driving the design and development of new ideas in other modes of human-computer interfaces (HCIs). Virtual Reality (VR) technology uses computers and HCIs to create the feeling of immersion in a three-dimensional (3D) environment that contains interactive objects with a sense of spatial presence, where objects have a spatial location relative to, and independent of the users. While this virtual environment does not necessarily match the real world, by creating the illusion of reality, it helps users leverage the full range of human sensory capabilities. Similarly, Augmented Reality (AR), superimposes virtual images to the real world. Because humans learn the physical world through a gradual sensory familiarization, these immersive visualizations enable gaining familiarity with biological systems not realizable in the physical world (e.g., allosteric regulatory networks within a protein or biomolecular pathways inside a cell). As VR/AR interfaces are anticipated to be explosive in consumer markets, systems biologists will be more immersed into their world. Here we introduce a brief history of VR/AR, their current roles in systems biology, and advantages and disadvantages in augmenting user abilities. We next argue that in systems biology, VR/AR technologies will be most useful in visually exploring and communicating data; performing virtual experiments; and education/teaching. Finally, we discuss our perspective on future directions for VR/AR in systems biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA