RESUMO
Sensing of extracellular ATP (eATP) controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin 1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses in vivo, however, has not been previously addressed. Here, we report that T-cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 promotes both effector and memory CD8+ T cell responses. Panx1 favors initial effector CD8+ T cell activation through extracellular ATP (eATP) export and subsequent P2RX4 activation, which helps promote full effector differentiation through extracellular lactate accumulation and its subsequent recycling. In contrast, Panx1 promotes memory CD8+ T cell survival primarily through ATP export and subsequent P2RX7 engagement, leading to improved mitochondrial metabolism. In summary, Panx1-mediated eATP export regulates effector and memory CD8+ T cells through distinct purinergic receptors and different metabolic and signaling pathways.
RESUMO
Sensing of extracellular metabolites controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin-1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses to antigen, however, has not been previously addressed. Here, we report that T cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 favors memory CD8+ T cell survival primarily through ATP export and induction of mitochondrial metabolism. CD8-specific Panx1 is also crucial for the effector expansion of CD8+ T cells, however this regulation occurs independently of eATP. Instead, our results suggest a connection between Panx1-induced extracellular lactate accumulation and the complete activation of effector CD8+ T cells. In summary, Panx1 regulates effector and memory CD8+ T cells through export of distinct metabolites and by engaging different metabolic and signaling pathways.