Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 21(1): 88, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295600

RESUMO

OBJECTIVES: Swimming is one of the most popular forms of physical activity. Pool water is cleaned with chlorine, which - in combination with compounds contained in water - could form chloramines and trichloromethane in the swimmer's lungs. The aim of the present study was to examine the effect of swimming training in an indoor pool on the composition of swimmers' respiratory phase metabolomics, and develop a system to provide basic information about its impact on the swimmer's airway mucosa metabolism, which could help to assess the risk of secondary respiratory tract diseases i.e. sport results, condition, and health including lung acute and chronic diseases). DESIGN: A group of competitive swimmers participated in the study and samples of their respiratory phase before training, immediately after training, and 2 h after training were assessed. METHODS: Sixteen male national and international-level competitive swimmers participated in this study. Respiratory phase analysis of the indoor swimming pool swimmers was performed. Gas chromatography combined with mass spectrometry (GCMS) was used in the measurements. All collected data were transferred to numerical analysis for trends of tracking and mapping. The breathing phase was collected on special porous material and analyzed using GCMS headspace. RESULTS: The obtained samples of exhaled air were composed of significantly different metabolomics when compared before, during and after exercise training. This suggests that exposition to indoor chlorine causes changes in the airway mucosa. CONCLUSION: This phenomenon may be explained by occurrence of a chlorine-initiated bio-reaction in the swimmers' lungs. The obtained results indicate that chromatographic exhaled gas analysis is a sensitive method of pulmonary metabolomic changes assessment. Presented analysis of swimmers exhaled air indicates, that indoor swimming may be responsible for airway irritation caused by volatile chlorine compounds and their influence on lung metabolism.


Assuntos
Cloro/metabolismo , Mecânica Respiratória/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Piscinas , Natação/fisiologia , Cloro/efeitos adversos , Cloro/análise , Humanos , Masculino , Testes de Função Respiratória/métodos , Mecânica Respiratória/fisiologia , Adulto Jovem
2.
J Clin Med ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256555

RESUMO

Restaging of mediastinal lymph nodes plays a crucial role in the multimodal treatment of stage IIIA Non-Small-Cell Lung Cancer (NSCLC). This study aimed to assess the impact of restaging using endobronchial ultrasound (EBUS), endoesophageal ultrasound (EUS), and transcervical extended mediastinal lymphadenectomy (TEMLA) after neoadjuvant chemotherapy (CHT) or chemoradiotherapy (CRT) on the 5-year overall survival (OS) of patients with NSCLC diagnosed with clinical stage IIIA-IIIB and metastatic ipsilateral mediastinal nodes (N2) who underwent radical pulmonary resections. Patients diagnosed with stage IIIA-IIIB NSCLC and N2 mediastinal nodes were included in this study. Restaging of mediastinal lymph nodes was performed using EBUS, EUS, and TEMLA. The patients were divided into two groups based on the restaging method: the TEMLA restaging group and the chest CT scan-only group. The primary outcome measure was the 5-year OS rate, and the secondary outcome measures included median OS and survival percentages. Statistical analysis, including the log-rank test, was conducted to assess the differences between the two groups. The TEMLA restaging group demonstrated significantly better overall survival compared to the chest CT scan-only group (log-rank test, p = 0.02). This was evident through a four-fold increase in median OS (59 vs. 14 months) and a higher 5-year OS rate of 55.9% (95% CI: 40.6-71.1) compared to 25.0% (95% CI: 13.7-36.3) in the chest CT scan-only group (p = 0.003). Invasive restaging of mediastinal lymph nodes improves the selection of patients with stage IIIA-IIIB (N2) NSCLC after neoadjuvant therapy. The use of EBUS, EUS, and TEMLA provides valuable information for identifying patients who may benefit from surgery by identifying N2 to N0-1 downstaging. These findings emphasize the importance of incorporating restaging procedures into the treatment decision-making process for NSCLC patients with mediastinal lymph node involvement.

3.
J Clin Med ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792292

RESUMO

Background/Objectives: Aseptic loosening is the leading cause of late revision in total hip arthroplasty, primarily due to degenerative oxidation of polyethylene components, leading to wear particle formation and periacetabular osteolysis. This study aimed to analyze the oxidation levels in polyethylene liners and cemented cups retrieved from revision surgeries using Fourier-transform infrared spectroscopy (FTIR) and to explore the correlation between oxidation levels and factors such as head size, head material, fixation method, and implant survival time. Methods: Polyethylene liners and cups were analyzed post-revision surgery to assess oxidation levels, which were then compared to periacetabular bone loss measured by the Paprosky classification. This study evaluated the impact of head size (28 mm vs. 32 mm), head material (ceramic vs. metal), and fixation methods on oxidation. The relationship between the mean oxidation index (OI) and implant survival time was also investigated. Results: There was a significant positive correlation between the mean oxidation index of the polyethylene components and the severity of periacetabular osteolysis according to the Paprosky scale. While the mean OI for samples articulating with ceramic heads was lower than for those with metal heads, and the mean OI for samples with a 32 mm head size was lower than for those with a 28 mm size, these differences were not statistically significant. Furthermore, the fixation method did not affect the oxidation index, and no correlation was found between OI and the survival time of the implants. Conclusions: This study confirms a direct correlation between polyethylene oxidation and periacetabular osteolysis in hip replacements, highlighting the importance of material choice and design in potentially reducing the risk of aseptic loosening. Despite the lack of significant differences in oxidation levels based on head material and size, these factors may still play a role in the long-term outcome of hip arthroplasty, warranting further investigation.

4.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109884

RESUMO

The use of modern materials in sports, in terms of chemical composition and surface texture, entails both progress in results and an increasing discrepancy in the technical parameters of the equipment used. This paper aims to demonstrate the differences between balls admitted to a league and world championships in composition, surface texture, and the influence of these parameters on the water polo game. This research compared two new balls produced by top companies producing sports accessories (Kap 7 and Mikasa). To obtain the goal, the measurement of the contact angle, analysis of the material using Fourier-transform infrared spectroscopy, and optical microscopic evaluation were used. The analysis of the surface free energy shows significant differences (Kap 7 32.16 mJ/m2, Mikasa 36.48 mJ/m2). In the case of both balls, anisotropies of the structure of the furrows were observed, however, the Mikasa ball is slightly more homogeneous than the Kap 7 ball. The obtained results from the analysis of the contact angle, as well as the composition and real feedback from the players, indicated the need to standardize the material aspect of the regulations so that the sports results are repeatable every time.

5.
Materials (Basel) ; 15(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744221

RESUMO

The aim of the study was the qualitative assessment of new materials based on a polycarbonate matrix in terms of its use in 3D printing and its processing and geometric modification (cutting). Filaments made of the new material doped with talc in five different proportions were visually inspected with a microscope. The calibration and test models were made using the FFF (fused filament fabrication) technique. In addition, its susceptibility to the drill and the behavior of the shavings were assessed and the temperature changing during drilling was measured. The implant was inserted to measure its resonance stability in each of the holes made and translated into the value of the implant stability quotient (ISQ) ranging from 1 to 100. The results were compared to those obtained for the training model of the skull bone. The amount of filler has been shown to affect the composite. Moreover, due to the properties of talc, a compatibilizer (polyol) was used. Differences were observed between the model made of the commercial material, the model made of the dried, tested material, and the model made of the undried material. It was confirmed that the presence of water in the material during its processing is important.

6.
Materials (Basel) ; 15(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591653

RESUMO

The main aim of the study was to synthesize and analyze spectral data to determine the structure and stereometry of the carbon-based porous material internal structure. Samples of a porous biomaterial were synthesized through anionic polymerization following our own patent and then carbonized. The samples were investigated using MALDI ToF MS, FTIR ATR spectroscopy, optic microscopy, SEM, confocal laser scanning microscopy and CMT imaging. The analysis revealed the chemical and stereological structure of the obtained porous biomaterial. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The developed material can be used to collect adsorption of breathing phase samples to determine the parity composition of exhaled air.

7.
Materials (Basel) ; 15(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683192

RESUMO

Ni-poly(DPU) composite powder was produced under galvanostatic conditions from a nickel bath with the addition of pulverized polymer obtained during the shredding of polyurethane foam (poly(DPU)). The Ni-poly(DPU) composite powder was characterized by the presence of polymer particles covered with an electrolytical amorphous-nanocrystalline nickel coating. The phase structure, chemical composition, morphology, and the distribution of elements was investigated. The chemical analysis showed that the powder contains 41.7% Ni, 16.4% C, 15.7% O, 8.2% P and 0.10% S. The other components were not determined (nitrogen and hydrogen). The phase analysis showed the presence of NiC phase. Composite powder particles are created as a result of the adsorption of Me ions on the fragmented polymer. The current flowing through the galvanic bath forces the flow of the particles. The foam particles with adsorbed nickel ions are transported to the cathode surface, where the Ni2+ is discharged. The presence of compound phosphorus in galvanic solution generates the formation of amorphous-nanocrystalline nickel, which covers the polymer particles. The formed nickel-polymer composite powder falls to the bottom of the cell.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36612835

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disease with a serious prognosis. The aim of this study was to identify biomarkers for PAH in the breath phase and to prepare an automatic classification method to determine the changing metabolome trends and molecular mapping. A group of 37 patients (F/M: 8/29 women, mean age 60.4 ± 10.9 years, BMI 27.6 ± 6.0 kg/m2) with diagnosed PAH were enrolled in the study. The breath phase of all the patients was collected on a highly porous septic material using a special patented holder PL230578, OHIM 002890789-0001. The collected air was then examined with gas chromatography coupled with mass spectrometry (GC/MS). The algorithms of Spectral Clustering, KMeans, DBSCAN, and hierarchical clustering methods were used to perform the cluster analysis. The identification of the changes in the ratio of the whole spectra of biomarkers allowed us to obtain a multidimensional pathway for PAH characteristics and showed the metabolome differences in the four subgroups divided by the cluster analysis. The use of GC/MS, supported with novel porous polymeric materials, for the breath phase analysis seems to be a useful tool in selecting bio-fingerprints in patients with PAH. The four metabolome classes which were obtained constitute novel data in the PAH population.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Metaboloma , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/metabolismo
9.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772121

RESUMO

Ni-P-ZrO2 composite powder was obtained from a galvanic nickel bath with ZrO2 powder. Production was conducted under galvanostatic conditions. The Ni-P-ZrO2 composite powder was characterized by the presence of ZrO2 particles covered with electrolytical nanocrystalline Ni-P coating. The chemical composition (XRF method), phase structure (XRD method) and morphology (SEM) of Ni-P-ZrO2 and the distribution of elements in the powder were all investigated. Based on the analyses, it was found that the obtained powder contained about 50 weight % Zr and 40 weight % Ni. Phase structure analysis showed that the basic crystalline component of the tested powder is a mixed oxide of zirconium and yttrium Zr0.92Y0.08O1.96. In addition, the sample contains very large amounts of amorphous compounds (Ni-P). The mechanism to produce the composite powder particles is explained on the basis of Ni2+ ions adsorption process on the metal oxide particles. Current flow through the cell forces the movement of particles in the bath. Oxide grains with adsorbed nickel ions were transported to the cathode surface. Ni2+ ions were discharged. The oxide particles were covered with a Ni-P layer and the heavy composite grains of Ni-P-ZrO2 flowed down to the bottom of the cell.

10.
Polymers (Basel) ; 13(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685330

RESUMO

This research aimed to examine the mechanical properties of polycarbonate-based composites filled with both organic and inorganic reinforcements before and after simulated environmental degradation. Series of polycarbonate-based samples were prepared in the form of thin tapes. Their rheological properties were examined. Then, the samples were exposed to artificial environmental conditions. Finally, their rheological properties were examined once more, and the results were compared with those obtained for untreated samples. This paper presents basic research on the application of inorganic fillers to polycarbonate in order to determine the influence of the filler on the behavior of the obtained material. The aim of the work was to determine the usefulness and purpose of using this type of filler in polycarbonates for applications in contact with ultraviolet radiation, especially medical applications.

11.
J Funct Biomater ; 12(1)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530438

RESUMO

The aim of this study was to quantitatively evaluate alloplastic Temporomandibular Joint (TMJ) Prostheses against other treatment modalities regarding the jaw kinematics. Six patients with Temporomandibular Joint Prostheses, four with mandibular ramus Patient-Specific Implant (PSI) with condylar head preservation, and four after mandibular condylectomy were evaluated by the means of axiography (Cadiax Compact 2), which is the noninvasive three-dimensional study of condylar movements. The patients were also evaluated clinically for the mandibular movements. The study revealed that the significant movement limitations occurred bilaterally in patients fitted with TMJ prosthesis. For the protrusion movement, the vector length of the movement (L) for the TMJ prosthesis was 0.31 vs. 3.01 mm for the PSI (Kruskal-Wallis chi-squared = 9.1667, df = 2, p-value = 0.01022, post hoc Dunn p-value = 0.015) and for the laterotrusion to the operated side, the length of the vector (L) was 0.66 vs. 3.35 mm, respectively. Statistically significant differences between groups were most frequent for the laterotrusion to the unoperated side. The study shows that a further development on TMJ Prostheses geometry and materials is needed.

12.
Materials (Basel) ; 14(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443247

RESUMO

In the era of modern medicine, the number of invasive treatments increases. Artificial devices used in medicine are associated with an increased risk of secondary infections. Bacterial biofilm development observed on the implanted surface is challenging to treat, primarily due to low antibiotics penetration. In our study, the preparation of a new polycarbonate composite, filled with nanosilver, nanosilica and rhodamine B derivative, suitable for three-dimensional printing, is described. Polymer materials with antimicrobial properties are known. However, in most cases, protection is limited to the outer layers only. The newly developed materials are protected in their entire volume. Moreover, the antibacterial properties are retained after multiple high-temperature processing were performed, allowing them to be used in 3D printing. Bacterial population reduction was observed, which gives an assumption for those materials to be clinically tested in the production of various medical devices and for the reduction of morbidity and mortality caused by multidrug-resistant bacteria.

13.
Polymers (Basel) ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036466

RESUMO

This article presents the results of research related to the development of cellulose man-made fibers with luminescent properties. The fibers were obtained from regenerated cellulose with the use of the N-Methylmorpholine-N-Oxide (NMMO) method for lyocell (Tencel) fiber formation. The method is named after the cellulose solvent (NMMO) used to obtain the spinning solution. Fibers are formed by the dry-wet spinning method. Due to the characteristic of the lyocell process, the fibers were easily modified to achieve luminescent properties with star-shaped organic compound poly((9-carbazolyl)methylthiirane) (KMT). Fibers were examined on their mechanical parameters with the use of Zwick Z2.5/TN1S tensile testing machine, and the results show the influence of the KMT concentration in the fiber matrix on mechanical parameters of the fibers. The study also attempted to determine the concentration of the modifier in the fibers with the use of UV-VIS Spectrofluorometer JASCO. The luminescent properties of fibers were estimated as well, using Jobin-Yvon spectrofluorometer FLUOROMAX-4, and the results are very promising as the fibers emit blue light in the range of visible light spectrum even for small concentrations of KMT (about 0.1 wt.%).

14.
Materials (Basel) ; 13(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610478

RESUMO

Polyoxymethylene (POM) is one of the most popular thermoplastic polymers used in the industry. Therefore, the interest in its potential applications in rapid prototyping is understandable. Nevertheless, its low dimensional stability causes the warping of 3D prints, limiting its applications. This research aimed to evaluate the effects of POM modification with ethylene-vinyl acetate (EVA) (2.5, 5.0, and 7.5 wt.%) on its processing (by melt flow index), structure (by X-ray microcomputed tomography), and properties (by static tensile tests, surface resistance, contact angle measurements, differential scanning calorimetry, and thermogravimetric analysis), as well as very rarely analyzed emissions of volatile organic compounds (VOCs) (by headspace analysis). Performed modifications decreased stiffness and strength of the material, simultaneously enhancing its ductility, which simultaneously increased the toughness even by more than 50% for 7.5 wt.% EVA loading. Such an effect was related to an improved linear flow rate resulting in a lack of defects inside the samples. The decrease of the melting temperature and the slight increase of thermal stability after the addition of EVA broadened the processing window for 3D printing. The 3D printing trials on two different printers showed that the addition of EVA copolymer increased the possibility of a successful print without defects, giving space for further development.

15.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028589

RESUMO

This study analyzed the effects of irradiation of polytetrafluoroethylene (PTFE) containing 40% of bronze using an electron beam with energy of 10 MeV. Dosages from 26 to156 kGy (2.6-15.6 Mrad) were used. The impact of a high-energy electron beam on the thermal, spectrophotometric, mechanical, and tribological properties was determined, and the results were compared with those obtained for pure PTFE. Thermal properties studies showed that such irradiation caused changes in melting temperature Tm and crystallization temperature Tc, an increase in crystallization heat ∆Hc, and a large increase in crystallinity χc proportional to the absorbed dose for both polymers. The addition of bronze decreased the degree of crystallinity of PTFE by twofold. Infrared spectroscopy (FTIR) studies confirmed that the main phenomenon associated with electron beam irradiation was the photodegradation of the polymer chains for both PTFE containing bronze and pure PTFE. This had a direct effect on the increase in the degree of crystallinity observed in DSC studies. The use of a bronze additive could lead to energy dissipation over the additive particles. An increase in hardness H and Young's modulus E was also observed. The addition of bronze and the irradiation with an electron beam improved of the operational properties of PTFE.

16.
Polymers (Basel) ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731329

RESUMO

This research investigated the effect of irradiation with an electron beam energy of 10 MeV in doses of 26-156 kGy on polytetrafluoroethylene (PTFE) with a 15% and 20% graphite additive. The research has shown that mechanical (compression strength, hardness, and Young's modulus) and sclerometric (coefficient of wear micromechanism and coefficient of resistance to wear) properties improve and tribological wear decreases as graphite content increases. Electron beam irradiation increases the degree of crystallinity of both materials to a similar extent. However significant differences in the improvement of all examined properties have been demonstrated for PTFE with higher (20%) graphite content subjected to the electron beam irradiation. This polymer is characterized by higher hardness and Young's modulus, reduced susceptibility to permanent deformation, higher elasticity, compression strength, and above all, a nearly 30% reduction in tribological wear compared to PTFE with a 15% graphite additive. The most advantageous properties can be obtained for both of the examined composites after absorbing a dose of 104 kGy. The obtained results hold promise for the improvement of the operational life of friction couples which do not require lubrication, used for example in air compressors and engines, and for the possibility of application of these modified polymers. In particular PTFE with 20% graphite content, in the nuclear and space industry.

17.
Polymers (Basel) ; 11(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554275

RESUMO

In today's analytical trends, there is an ever-increasing importance of polymeric materials for low molecular weight compounds including amines and drugs because they can act as carriers or capture amines or drugs. The use of this type of materials will allow the development of modern materials for the chromatographic column beds and the substrates of selective sensors. Moreover, these kinds of materials could be used as a drug carrier. Therefore, the aim of this study is presenting the synthesis and complexing properties of star-shaped oxiranes as a new sensor for the selective complexation of low molecular weight compounds. Propylene oxide and selected oxirane monomers with carbazolyl in the substituent were selected as the monomers in this case and tetrahydrofuran as its solvent. The obtained polymer structures were characterized using the MALDI-TOF. It was found that in the initiation step potassium hydride deprotonates the monomer molecule and takes also part in the nucleophilic substitution. The resulting polymeric material preferably cross-linked with selected di-oxiranes (1,2,7,8-diepoksyoktan in respect ratio 3:1 according to active center) was then used as a stationary phase in the column and thin layer chromatography for amine separation and identification. Sorption ability of the resulting deposits was determined using a quartz microbalance (QCMB). The study was carried out in stationary mode and flow cells to simulate actual operating phase conditions. Based on changes in electrode vibration frequency, the maximum amount of adsorbed analyte and the best conditions for its sorption were determined.

18.
Int J Anal Chem ; 2016: 3727062, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528874

RESUMO

Potassium t-butoxide dissolved in tetrahydrofuran effectively initiates homogeneous polymerization of propylene oxide at room temperature. Unsaturation and molar mass (M n ) of the polymers prepared depend on the presence of additives, such as macrocyclic ligand 18-crown-6 (L) and t-butanol. Application of the ligand alone results in distinct increase of unsaturation and decrease of M n , whereas use of t-BuOH leads to simultaneous decrease of unsaturation and M n . Activation of t-BuOK/t-BuOH system with the ligand causes further decrease of unsaturation, that is, from 12.0 to 3.5 mol % for OK/OH (1/3) and OK/OH/L (1/3/2) systems, respectively. Unexpectedly, M n of the polymers obtained does not practically change (~4800). This result differs from that reported earlier for neat PO polymerization initiated potassium 1-methoxy-2-propoxide/1-methoxy-2-propanol, in which in the presence of the same ligand M n increases to ~12 400 for the same ratio of reagents. The mechanism of studied processes was discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA