Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Carcinog ; 63(1): 173-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787401

RESUMO

Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/uso terapêutico , Linhagem Celular Tumoral
2.
Sci Rep ; 14(1): 16779, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039094

RESUMO

Boswellia carterii (BC) resins plants have a long historical background as a treatment for inflammation, as indicated by information originating from multiple countries. Twenty-seven diterpenoids have been identified in ethyl acetate and total methanol BC, comprising seventeen boscartins of the cembrane-type diterpenoids and ten boscartols of the prenylaromadendrane-type diterpenoids. Moreover, twenty-one known triterpenoids have also been found, encompassing nine tirucallane-type, six ursane-type, four oleanane-type, and two lupane-type. The cembrane-type diterpenoids hold a significant position in pharmaceutical chemistry and related industries due to their captivating biological characteristics and promising pharmacological potentials. Extraction of BC, creation and assessment of nano sponges loaded with either B. carterii plant extract or DEX, are the subjects of our current investigation. With the use of ultrasound-assisted synthesis, nano sponges were produced. The entrapment efficiency (EE%) of medications in nano sponges was examined using spectrophotometry. Nano sponges were characterized using a number of methods. Within nano sponges, the EE% of medicines varied between 98.52 ± 0.07 and 99.64 ± 1.40%. The nano sponges' particle sizes varied from 105.9 ± 15.9 to 166.8 ± 26.3 nm. Drugs released from nano sponges using the Korsmeyer-Peppas concept. In respiratory distressed rats, the effects of BC plant extract, DEX salt and their nano formulations (D1, D5, P1 and P1), were tested. Treatment significantly reduced ICAM-1, LTB4, and ILß 4 levels and improved histopathologic profiles, when compared to the positive control group. Boswellia extract and its nano sponge formulation P1 showed promising therapeutic effects. The effect of P1 may be due to synergism between both the extract and the formulation. This effect was achieved by blocking both ICAM-1 and LTB4 pathways, therefore counteracting the effects of talc powder.


Assuntos
Boswellia , Extratos Vegetais , Terpenos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Boswellia/química , Ratos , Terpenos/química , Terpenos/farmacologia , Acetatos/química , Ciclodextrinas/química , Masculino , Nanopartículas/química
3.
Heliyon ; 9(10): e20542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810871

RESUMO

This work uses ab-initio CBS-QB3 and density functional theory (B3LYP) to analyze the structure, stability, and aromaticity of all isosteric nitrogen-boron pyrroles. The mono-NB unit substituted group of the isosteric NB pyrrole has four isosteres, whereas the multi-NB unit substituted group has two isosteres. These two groups make up all isosteric NB pyrrole. For structural, energetic, magnetic, and electron delocalization criteria, the results highlight the predominance of the PN3B2 isostere and its greater stability over other conformers. In addition, the global reactivity indices, ESP, HOMO-LUMO, and NBO charges have all been estimated to forecast the active side's electron donation and acceptance. These isosteres are categorized as weak electrophiles and marginal nucleophiles. NB-isosteres have poorer stability, HOMO-LUMO gap, and aromaticity than the parent (pyrrole). In general, NB compounds with more ring sharing are less aromatic than NB molecules with less ring sharing. The current study is anticipated to help in understanding of the chemistry of NB substituted molecules and their experimental identification and characterization.

4.
Sci Rep ; 13(1): 14929, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697015

RESUMO

The kidney flushes out toxic substances and metabolic waste products, and homeostasis is maintained owing to the kidney efforts. Unfortunately, kidney disease is one of the illnesses with a poor prognosis and a high death rate. The current investigation was set out to assess erythropoietin (EPO) potential therapeutic benefits against thioacetamide (TAA)-induced kidney injury in rats. EPO treatment improved kidney functions, ameliorated serum urea, creatinine, and malondialdehyde, increased renal levels of reduced glutathione, and slowed the rise of JAK2, STAT5, AMPK, and their phosphorylated forms induced by TAA. EPO treatment also greatly suppressed JAK2, Phosphatidylinositol 3-kinases, and The Protein Kinase R-like ER Kinase gene expressions and mitigated the histopathological alterations brought on by TAA toxicity. EPO antioxidant and anti-inflammatory properties protected TAA-damaged kidneys. EPO regulates AMPK, JAK2/STAT5, and pro-inflammatory mediator synthesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Eritropoetina , Animais , Ratos , Tioacetamida/toxicidade , Fator de Transcrição STAT5 , Eritropoetina/farmacologia , Rim
5.
Cell Mol Gastroenterol Hepatol ; 16(5): 685-709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37460041

RESUMO

BACKGROUND & AIMS: Alcohol-associated liver disease (ALD) represents a spectrum of alcohol use-related liver diseases. Outside of alcohol abstinence, there are currently no Food and Drug Administration-approved treatments for advanced ALD, necessitating a greater understanding of ALD pathogenesis and potential molecular targets for therapeutic intervention. The ABL-family proteins, including ABL1 and ABL2, are non-receptor tyrosine kinases that participate in a diverse set of cellular functions. We investigated the role of the ABL kinases in alcohol-associated liver disease. METHODS: We used samples from patients with ALD compared with healthy controls to elucidate a clinical phenotype. We established strains of liver-specific Abl1 and Abl2 knockout mice and subjected them to the National Institute on Alcohol Abuse and Alcoholism acute-on-chronic alcohol feeding regimen. Murine samples were subjected to RNA sequencing, AST, Oil Red O staining, H&E staining, Western blotting, and quantitative polymerase chain reaction to assess phenotypic changes after alcohol feeding. In vitro modeling in HepG2 cells as well as primary hepatocytes from C57BL6/J mice was used to establish this mechanistic link of ALD pathogenesis. RESULTS: We demonstrate that the ABL kinases are highly activated in ALD patient liver samples as well as in liver tissues from mice subjected to an alcohol feeding regimen. We found that the liver-specific knockout of Abl2, but not Abl1, attenuated alcohol-induced steatosis, liver injury, and inflammation. Subsequent RNA sequencing and gene set enrichment analyses of mouse liver tissues revealed that relative to wild-type alcohol-fed mice, Abl2 knockout alcohol-fed mice exhibited numerous pathway changes, including significantly decreased peroxisome proliferator activated receptor (PPAR) signaling. Further examination revealed that PPARγ, a previously identified regulator of ALD pathogenesis, was induced upon alcohol feeding in wild-type mice, but not in Abl2 knockout mice. In vitro analyses revealed that shRNA-mediated knockdown of ABL2 abolished the alcohol-induced accumulation of PPARγ as well as subsequent lipid accumulation. Conversely, forced overexpression of ABL2 resulted in increased PPARγ protein expression. Furthermore, we demonstrated that the regulation of hypoxia inducible factor 1 subunit alpha (HIF1α) by ABL2 is required for alcohol-induced PPARγ expression. Furthermore, treatment with ABL kinase inhibitors attenuated alcohol-induced PPARγ expression, lipid droplet formation, and liver injury. CONCLUSIONS: On the basis of our current evidence, we propose that alcohol-induced ABL2 activation promotes ALD through increasing HIF1α and the subsequent PPARγ expression, and ABL2 inhibition may serve as a promising target for the treatment of ALD.


Assuntos
Hepatopatias Alcoólicas , PPAR gama , Humanos , Animais , Camundongos , Hepatopatias Alcoólicas/patologia , Etanol/toxicidade , Camundongos Knockout , Tirosina
6.
Front Immunol ; 13: 1022401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479107

RESUMO

Roles of platelets during infections surpass the classical thrombus function and are now known to modulate innate immune cells. Leukocyte-platelet aggregations and activation-induced secretome are among factors recently gaining interest but little is known about their interplay with severity and mortality during the course of SARS-Cov-2 infection. The aim of the present work is to follow platelets' bioenergetics, redox balance, and calcium homeostasis as regulators of leukocyte-platelet interactions in a cohort of COVID-19 patients with variable clinical severity and mortality outcomes. We investigated COVID-19 infection-related changes in platelet counts, activation, morphology (by flow cytometry and electron microscopy), bioenergetics (by Seahorse analyzer), mitochondria function (by high resolution respirometry), intracellular calcium (by flow cytometry), reactive oxygen species (ROS, by flow cytometry), and leukocyte-platelet aggregates (by flow cytometry) in non-intensive care unit (ICU) hospitalized COVID-19 patients (Non-ICU, n=15), ICU-survivors of severe COVID-19 (ICU-S, n=35), non-survivors of severe COVID-19 (ICU-NS, n=60) relative to control subjects (n=31). Additionally, molecular studies were carried out to follow gene and protein expressions of mitochondrial electron transport chain complexes (ETC) in representative samples of isolated platelets from the studied groups. Our results revealed that COVID-19 infection leads to global metabolic depression especially in severe patients despite the lack of significant impacts on levels of mitochondrial ETC genes and proteins. We also report that severe patients' platelets exhibit hyperpolarized mitochondria and significantly lowered intracellular calcium, concomitantly with increased aggregations with neutrophil. These changes were associated with increased populations of giant platelets and morphological transformations usually correlated with platelets activation and inflammatory signatures, but with impaired exocytosis. Our data suggest that hyperactive platelets with impaired exocytosis may be integral parts in the pathophysiology dictating severity and mortality in COVID-19 patients.


Assuntos
COVID-19 , Cálcio , Humanos , SARS-CoV-2 , Leucócitos , Metaboloma
7.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922496

RESUMO

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson-Cook constitutive relation and Johnson-Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic-brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress-strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress-strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.

8.
Eur J Hum Genet ; 29(6): 957-964, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824466

RESUMO

HEAT repeats are 37-47 amino acid flexible tandem repeat structural motifs occurring in a wide variety of eukaryotic proteins with diverse functions. Due to their ability to undergo elastic conformational changes, they often serve as scaffolds at sites of protein interactions. Here, we describe four affected children from two families presenting with pontocerebellar hypoplasia manifest clinically with neonatal seizures, severe intellectual disability, and motor delay. Whole exome sequencing identified biallelic variants at predicted splice sites in intron 31 of HEATR5B, encoding the HEAT repeat-containing protein 5B segregating in a recessive fashion. Aberrant splicing was found in patient fibroblasts, which correlated with reduced levels of HEATR5B protein. HEATR5B is expressed during brain development in human, and we failed to recover live-born homozygous Heatr5b knockout mice. Taken together, our results implicate loss of HEATR5B in pontocerebellar hypoplasia.


Assuntos
Doenças Cerebelares/genética , Deficiências do Desenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Criança , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Síndrome
9.
Sci Rep ; 9(1): 14197, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578454

RESUMO

Although the utilization of selective BRAFV600E inhibitors is associated with improved overall survival in patients with metastatic melanoma, a growing challenge of drug resistance has  emerged. CDC7 has been shown to be overexpressed and associated with poor prognosis in various cancers including melanoma. Thus, we aimed to elucidate the biological role of CDC7 in promoting Vemurafenib resistance and the anticipated benefits of dual targeting of BRAFV600E and CDC7 in melanoma cells. We performed exosomes-associated microRNA profiling and functional assays to determine the role of CDC7 in drug resistance using Vemurafenib-sensitive and resistant melanoma cells. Our results demonstrated that Vemurafenib-resistant cells exhibited a persistent expression of CDC7 in addition to prolonged activity of MCM2 compared to drug-sensitive cells. Reconstitution of miR-3613-3p in resistant cells downregulated CDC7 expression and reduced the number of colonies. Treatment of cells with low concentrations of CDC7 inhibitor TAK-931 sensitized resistant cells to Vemurafenib and reduced the number of cell colonies. Taken together, CDC7 overexpression and downregulation of miR-3613-3p were associated with Vemurafenib resistance in BRAFV600E- bearing melanoma cells. Dual targeting of CDC7 and BRAFV600E reduced the development of resistance against Vemurafenib. Further studies are warranted to investigate the clinical effect of targeting CDC7 in metastatic melanoma.


Assuntos
Proteínas de Ciclo Celular/genética , Melanoma/tratamento farmacológico , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Proteínas de Manutenção de Minicromossomo/efeitos dos fármacos , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Vemurafenib/efeitos adversos
10.
Sci Rep ; 8(1): 16335, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397274

RESUMO

Molecular mechanisms underlying the health disparity of prostate cancer (PCa) have not been fully determined. In this study, we applied bioinformatic approach to identify and validate dysregulated genes associated with tumor aggressiveness in African American (AA) compared to Caucasian American (CA) men with PCa. We retrieved and analyzed microarray data from 619 PCa patients, 412 AA and 207 CA, and we validated these genes in tumor tissues and cell lines by Real-Time PCR, Western blot, immunocytochemistry (ICC) and immunohistochemistry (IHC) analyses. We identified 362 differentially expressed genes in AA men and involved in regulating signaling pathways associated with tumor aggressiveness. In PCa tissues and cells, NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3 and AMD1 transcripts were significantly upregulated (p < 0.05) compared to normal cells. IHC confirmed the overexpression of TPD52 (p = 0.0098) and LTC4S (p < 0.0005) in AA compared to CA men. ICC and Western blot analyses additionally corroborated this observation in PCa cells. These findings suggest that dysregulation of transcripts in PCa may drive the disparity of PCa outcomes and provide new insights into development of new therapeutic agents against aggressive tumors. More studies are warranted to investigate the clinical significance of these dysregulated genes in promoting the oncogenic pathways in AA men.


Assuntos
Negro ou Afro-Americano/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , População Branca/genética , População Branca/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA