Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Chem Rev ; 124(10): 6501-6542, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722769

RESUMO

Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.


Assuntos
Aminoácidos , Aminoácidos/química , Proteínas/química , Proteínas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Microscopia/métodos , Espectroscopia de Ressonância Magnética/métodos , Humanos
2.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010565

RESUMO

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Assuntos
Integrinas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Triptofano/análogos & derivados , Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Integrinas/fisiologia , Peptídeos/síntese química , Peptídeos/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Triptofano/síntese química , Triptofano/química
3.
Phys Chem Chem Phys ; 23(11): 6433-6437, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710175

RESUMO

Fluorescent amino acids (FAAs) offer significant advantages over fluorescent proteins in applications where the fluorophore size needs to be limited or minimized. A long-sought goal in biological spectroscopy/microcopy is to develop visible FAAs by modifying the indole ring of tryptophan. Herein, we examine the absorption spectra of a library of 4-substituted indoles and find that the frequency of the absorption maximum correlates linearly with the global electrophilicity index of the substituent. This finding permits us to identify two promising candidates, 4-formyltryptophan (4CHO-Trp) and 4-nitrotryptophan (4NO2-Trp), both of which can be excited by visible light. Further fluorescence measurements indicate that while 4CHO-indole (and 4CHO-Trp) emits cyan fluorescence with a reasonably large quantum yield (ca. 0.22 in ethanol), 4NO2-indole is essentially non-fluorescent, suggesting that 4CHO-Trp (4NO2-Trp) could be useful as a fluorescence reporter (quencher). In addition, we present a simple method for synthesizing 4CHO-Trp.


Assuntos
Indóis/química , Luz , Triptofano/química , Corantes Fluorescentes/química , Teoria Quântica , Espectrometria de Fluorescência
4.
Phys Chem Chem Phys ; 22(15): 7794-7802, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242578

RESUMO

Glycine betaine (GB) is a naturally occurring osmolyte that has been widely recognized as a protein protectant. Since GB consists of a methylated ammonium moiety, it can engage in strong cation-π interactions with aromatic amino acid sidechains. We hypothesize that such specific binding interactions would allow GB to decrease the stability of proteins that are predominantly stabilized by a cluster of aromatic amino acids. To test this hypothesis, we investigate the effect of GB on the stability of two ß-hairpins (or mini-proteins) that contain such a cluster. We find that for both systems the stability of the folded state first decreases and then increases with increasing GB concentration. Such non-monotonic dependence not only confirms that GB can act as a protein denaturant, but also underscores the complex interplay between GB's stabilizing and destabilizing forces toward a given protein. While stabilizing osmolytes all have the tendency to be excluded from the protein surface which is the action underlying their stabilizing effect, our results suggest that in order to quantitatively assess the effect of GB on the stability of any given protein, specific cation-π binding interactions need to be explicitly considered. Moreover, our results show, consistent with other studies, that cation methylation can strengthen the respective cation-π interactions. Taken together, these findings provide new insight into the mechanism by which amino acid-based osmolytes interact with proteins.


Assuntos
Betaína/farmacologia , Desnaturação Proteica , Proteínas/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 114(5): 1003-1008, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096375

RESUMO

Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.


Assuntos
Alanina/análogos & derivados , Aminoácidos Aromáticos/efeitos dos fármacos , Guanidina/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espectrofotometria Infravermelho/métodos , Alanina/química , Alanina/efeitos dos fármacos , Aminoácidos Aromáticos/química , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular , Guanidina/química , Interações Hidrofóbicas e Hidrofílicas , Nitrilas/química , Peptídeos/química , Desnaturação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Compostos de Amônio Quaternário/química , Solventes , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Proc Natl Acad Sci U S A ; 114(23): 6005-6009, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533371

RESUMO

Many fluorescent proteins are currently available for biological spectroscopy and imaging measurements, allowing a wide range of biochemical and biophysical processes and interactions to be studied at various length scales. However, in applications where a small fluorescence reporter is required or desirable, the choice of fluorophores is rather limited. As such, continued effort has been devoted to the development of amino acid-based fluorophores that do not require a specific environment and additional time to mature and have a large fluorescence quantum yield, long fluorescence lifetime, good photostability, and an emission spectrum in the visible region. Herein, we show that a tryptophan analog, 4-cyanotryptophan, which differs from tryptophan by only two atoms, is the smallest fluorescent amino acid that meets these requirements and has great potential to enable in vitro and in vivo spectroscopic and microscopic measurements of proteins.


Assuntos
Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Análise Espectral/métodos , Aminoácidos/química , Inativação Luminosa Assistida por Cromóforo , Fluorescência , Microscopia/métodos , Proteínas/química , Triptofano
7.
Phys Chem Chem Phys ; 21(24): 12843-12849, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31179453

RESUMO

Methods based on fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) are widely used in the biological sciences, employing mostly dye-based FRET and PET pairs. While very useful and important, dye-based reporters are not always applicable without concern, for example, in cases where the fluorophore size needs to be minimized. Therefore, development and characterization of smaller, ideally amino acid-based PET and FRET pairs will expand the biological spectroscopy toolbox to enable new applications. Herein, we show that, depending on the excitation wavelength, tryptophan and 4-cyanotrptophan can interact with each other via the mechanism of either energy or electron transfer, hence constituting a dual FRET and PET pair. The biological utility of this amino acid pair is further demonstrated by applying it to study the end-to-end collision rate of a short peptide, the mode of interaction between a ligand and BSA, and the activity of a protease.


Assuntos
Triptofano/análogos & derivados , Triptofano/química , Transporte de Elétrons , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Ligantes , Oligopeptídeos/química , Ligação Proteica , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Tripsina/química
8.
Lipids Health Dis ; 18(1): 107, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043156

RESUMO

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) refers to a series of diseases caused by atherosclerosis (AS). It is one of the most important causes of death worldwide. According to the inflammatory response theory, macrophages play a critical role in AS. However, the potential targets associated with macrophages in the development of AS are still obscure. This study aimed to use bioinformatics tools for screening and identifying molecular targets in AS macrophages. METHODS: Two expression profiling datasets (GSE7074 and GSE9874) were obtained from the Gene Expression Omnibus dataset, and differentially expressed genes (DEGs) between non-AS macrophages and AS macrophages were identified. Functional annotation of the DEGs was performed by analyzing the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. STRING and Cytoscape were employed for constructing a protein-protein interaction network and analyzing hub genes. RESULTS: A total of 98 DEGs were distinguished between non-AS macrophages and AS macrophages. The functional variations in DEGs were mainly enriched in response to hypoxia, respiratory gaseous exchange, protein binding, and intracellular, ciliary tip, early endosome membrane, and Lys63-specific deubiquitinase activities. Three genes were identified as hub genes, including KDELR3, CD55, and DYNC2H1. CONCLUSION: Hub genes and DEGs identified by using microarray techniques can be used as diagnostic and therapeutic biomarkers for AS.


Assuntos
Aterosclerose/genética , Biomarcadores/metabolismo , Macrófagos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Mapas de Interação de Proteínas/genética
9.
Molecules ; 24(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744004

RESUMO

Unnatural nucleosides possessing unique spectroscopic properties that mimic natural nucleobases in both size and chemical structure are ideally suited for spectroscopic measurements of DNA/RNA structure and dynamics in a site-specific manner. However, such unnatural nucleosides are scarce, which prompts us to explore the utility of a recently found unnatural nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS), as a site-specific spectroscopic probe of DNA. A recent study revealed that 4CNI-NS is a universal nucleobase that maintains the high fluorescence quantum yield of 4-cyanoindole and that among the four natural nucleobases, only guanine can significantly quench its fluorescence. Herein, we further show that the C≡N stretching frequency of 4CNI-NS is sensitive to the local environment, making it a useful site-specific infrared probe of oligonucleotides. In addition, we demonstrate that the fluorescence-quencher pair formed by 4CNI-NS and guanine can be used to quantitatively assess the binding affinity of a single-stranded DNA to the protein system of interest via fluorescence spectroscopy, among other applications. We believe that this fluorescence binding assay is especially useful as its potentiality allows high-throughput screening of DNA⁻protein interactions.


Assuntos
DNA/química , Desoxirribonucleosídeos/química , Corantes Fluorescentes/química , Indóis/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estrutura Molecular , Análise Espectral
10.
J Am Chem Soc ; 140(2): 629-635, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29241000

RESUMO

Herein, we combine several methods to characterize the fibrils formed by a TTR105-115 mutant in which Leu111 is replaced by the unnatural amino acid aspartic acid 4-methyl ester. We find that this mutant peptide exhibits significantly different aggregation behavior than the wild-type peptide: (1) it forms fibrils with a much faster rate, (2) its fibrils lack the long-range helical twists observed in TTR105-115 fibrils, (3) its fibrils exhibit a giant far-UV circular dichroism signal, and (4) its fibrils give rise to an unusual amide I' band consisting of four distinct and sharp peaks. On the basis of these results and also several previous computational studies, we hypothesize that the fibrils formed by this TTR mutant peptide contain both ß- and α-sheets.


Assuntos
Peptídeos beta-Amiloides/genética , Amiloide/genética , Amiloide/química , Peptídeos beta-Amiloides/química , Mutação , Multimerização Proteica/genética , Estrutura Secundária de Proteína
11.
Neurobiol Dis ; 117: 161-169, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859874

RESUMO

Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aß) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aß fibril formation. In addition, NAA added after 25 min of Aß aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aß fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aß aggregation in vivo where they are both found in the same neuronal compartments.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Amiloide/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Fragmentos de Peptídeos/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico/farmacologia , Relação Dose-Resposta a Droga , Humanos , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia
12.
Chembiochem ; 19(9): 902-906, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417711

RESUMO

Although helices play key roles in peptide-protein and protein-protein interactions, the helical conformation is generally unstable for short peptides (10-15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain-to-side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non-hydrogen-bonded amide groups to solvent. Here, we develop a "capped-strapped" peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end-capping interactions. We have designed a ten-residue capped-strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm ≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X-ray crystallography revealed a novel quaternary structure with implications for foldamer design.


Assuntos
Compostos Macrocíclicos/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Desdobramento de Proteína , Temperatura
13.
Phys Chem Chem Phys ; 20(4): 2527-2535, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29313858

RESUMO

Considerable efforts have been devoted to the development of spectroscopic probes that are sensitive to water and can be used to monitor, for example, biological and chemical processes involving dehydration or hydration. Continuing this line of research, herein we show that 7-cyanoindole can serve as a sensitive fluorescence probe of hydration as its fluorescence properties, including intensity, peak wavelength and lifetime, depend on the amount of water in nine water-organic solvent mixtures. Our results indicate that 7-cyanoindole is not only able to reveal the underlying microheterogeneity of these binary solvent systems, but also offers distinct advantages. These include: (1) its fluorescence intensity increases more than ten times upon going from a hydrated to a dehydrated environment; (2) its peak wavelength shifts as much as 35 nm upon dehydration; (3) its single-exponential fluorescence decay lifetime increases from 2.0 ns in water to 8-16 ns in water-organic binary mixtures, making it viable to distinguish between differently hydrated environments via fluorescence lifetime measurements; and (4) its absorption spectrum is significantly red-shifted from that of indole, making selective excitation of its fluorescence possible in the presence of naturally occurring amino-acid fluorophores. Moreover, we find that for seven binary mixtures the fluorescence lifetimes of 7-cyanoindole measured at solvent compositions where maximum microheterogeneity occurs correlate linearly with the peak wavenumbers of its fluorescence spectra obtained in the respective pure organic solvents. This suggests that the microheterogeneities of these binary mixtures bear certain similarity, a phenomenon that warrants further investigation.

14.
Phys Chem Chem Phys ; 19(7): 5028-5036, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28165082

RESUMO

An infrared temperature-jump (T-jump) study by Huang et al. (Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 2788-2793) showed that the conformational relaxation kinetics of an alanine-based α-helical peptide depend not only on the final temperature (Tf) but also on the initial temperature (Ti) when Tf is fixed. Their finding indicates that the folding free energy landscape of this peptide is non-two-state like, allowing for the population of conformational ensembles with different helical lengths and relaxation times in the temperature range of the experiment. Because α-helix folding involves two fundamental events, nucleation and propagation, the results of Huang et al. thus present a unique opportunity to determine their rate constants - a long-sought goal in the study of the helix-coil transition dynamics. Herein, we capitalize on this notion and develop a coarse-grained kinetic model to globally fit the thermal unfolding curve and T-jump kinetic traces of this peptide. Using this strategy, we are able to explicitly determine the microscopic rate constants of the kinetic steps encountered in the nucleation and propagation processes. Our results reveal that the time taken to form one α-helical turn (i.e., an α-helical segment with one helical hydrogen bond) is about 315 ns, whereas the time taken to elongate this nucleus by one residue (or backbone unit) is 5.9 ns, depending on the position of the residue.


Assuntos
Alanina/química , Modelos Químicos , Cinética , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Temperatura , Tempo
15.
Phys Chem Chem Phys ; 19(24): 16144-16150, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28604875

RESUMO

The C[double bond, length as m-dash]O/C[triple bond, length as m-dash]N stretching vibration arising from a carbonyl/nitrile functional group in various molecular systems has been frequently used to assess, for example, local hydrogen-bonding interactions, among other applications. However, in practice it is not always easy to ascertain whether the carbonyl or nitrile group in question is engaged in such interactions. Herein, we use 4-cyanoindole and cyclopentanone as models to show that, when a fundamental C[double bond, length as m-dash]O or C[triple bond, length as m-dash]N stretching mode is involved in Fermi resonance, the underlying vibrational coupling constant (W) is a convenient reporter of the hydrogen-bonding status of the corresponding carbonyl or nitrile group. Specifically, we find that for both groups a W value of 7.7 cm-1 or greater is indicative of their involvement in hydrogen-bonding interactions. Furthermore, we find that, as observed in similar studies, the Fermi resonance coupling leads to quantum beats in the two-dimensional infrared spectra of 4-cyanoindole in isopropanol, with a period of about 1.9 ps.

16.
Chem Phys Lett ; 685: 133-138, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29225366

RESUMO

Several cyanotryptophans have been shown to be useful biological fluorophores. However, how their fluorescence lifetimes vary with solvent has not been examined. In this regard, herein we measure the fluorescence decay kinetics as well as the absorption and emission spectra of six cyanoindoles in different solvents. In particular, we find, among other results, that only 4-cyanoindole affords a long fluorescence lifetime and hence high quantum yield in H2O. Therefore, our measurements provide not only a guide for choosing which cyanotryptophan to use in practice but also data for computational modeling of the substitution effect on the electronic transitions of indole.

17.
Chem Phys Lett ; 683: 193-198, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29033461

RESUMO

Because of their negatively charged carboxylates, aspartate and glutamate are frequently found at the active or binding site of proteins. However, studying a specific carboxylate in proteins that contain multiple aspartates and/or glutamates via infrared spectroscopy is difficult due to spectral overlap. We show, herein, that isotopic-labeling of the aspartate sidechain can overcome this limitation as the resultant 13C=O asymmetric stretching vibration resides in a transparent region of the protein IR spectrum. Applicability of this site-specific vibrational probe is demonstrated by using it to assess the dynamics of an aspartate ion buried inside a small protein via two-dimensional infrared spectroscopy.

18.
Proc Natl Acad Sci U S A ; 111(23): 8476-81, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912147

RESUMO

Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.


Assuntos
Metilaminas/farmacologia , Peptídeos/química , Conformação Proteica/efeitos dos fármacos , Proteínas/química , Ligação de Hidrogênio/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutação , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia/farmacologia , Água/química
19.
Angew Chem Int Ed Engl ; 56(19): 5283-5287, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28374543

RESUMO

Because of its importance in viral replication, the M2 proton channel of the influenza A virus has been the focus of many studies. Although we now know a great deal about the structural architecture underlying its proton conduction function, we know little about its conformational dynamics, especially those controlling the rate of this action. Herein, we employ a single-molecule fluorescence method to assess the dynamics of the inter-helical channel motion of both full-length M2 and the transmembrane domain of M2. The rate of this motion depends not only on the identity of the channel and membrane composition but also on the pH in a sigmoidal manner. For the full-length M2 channel, the rate is increased from approximately 190 µs-1 at high pH to approximately 80 µs-1 at low pH, with a transition midpoint at pH 6.1. Because the latter value is within the range reported for the conducting pKa value of the His37 tetrad, we believe that this inter-helical motion accompanies proton conduction.


Assuntos
Termodinâmica , Proteínas da Matriz Viral/metabolismo , Transporte de Elétrons , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Processos Fotoquímicos , Conformação Proteica , Espectrometria de Fluorescência , Proteínas da Matriz Viral/química
20.
Biophys J ; 110(9): 1924-32, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166801

RESUMO

As judged by a single publication metric, the activity in the protein folding field has been declining over the past 5 years, after enjoying a decade-long growth. Does this development indicate that the field is sunsetting or is this decline only temporary? Upon surveying a small territory of its landscape, we find that the protein folding field is still quite active and many important findings have emerged from recent experimental studies. However, it is also clear that only continued development of new techniques and methods, especially those enabling dissection of the fine details and features of the protein folding energy landscape, will fuel this old field to move forward.


Assuntos
Dobramento de Proteína , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA