Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 313(4): E402-E412, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655717

RESUMO

Females are typically more insulin sensitive than males, which may be partly attributed to greater brown adipose tissue (BAT) activity and uncoupling protein 1 (UCP1) content. Accordingly, we tested the hypothesis that UCP1 deletion would abolish sex differences in insulin sensitivity and that whitening of thoracic periaortic BAT caused by UCP1 loss would be accompanied with impaired thoracic aortic function. Furthermore, because UCP1 exerts antioxidant effects, we examined whether UCP1 deficiency-induced metabolic dysfunction was mediated by oxidative stress. Compared with males, female mice had lower HOMA- and AT-insulin resistance (IR) despite no significant differences in BAT UCP1 content. UCP1 ablation increased HOMA-IR, AT-IR, and whitening of BAT in both sexes. Expression of UCP1 in thoracic aorta was greater in wild-type females compared with males. Importantly, deletion of UCP1 enhanced aortic vasomotor function in females only. UCP1 ablation did not promote oxidative stress in interscapular BAT. Furthermore, daily administration of the free radical scavenger tempol for 8 wk did not abrogate UCP1 deficiency-induced increases in adiposity, hyperinsulinemia, or liver steatosis. Collectively, we report that 1) in normal chow-fed mice housed at 25°C, aortic UCP1 content was greater in females than males and its deletion improved ex vivo aortic vasomotor function in females only; 2) constitutive UCP1 content in BAT was similar between females and males and loss of UCP1 did not abolish sex differences in insulin sensitivity; and 3) the metabolic disruptions caused by UCP1 ablation did not appear to be contingent upon increased oxidative stress in mice under normal dietary conditions.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Aorta/metabolismo , Resistência à Insulina/genética , Estresse Oxidativo/genética , Proteína Desacopladora 1/genética , Sistema Vasomotor/metabolismo , Adiposidade/genética , Animais , Aorta/fisiopatologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais , Sistema Vasomotor/fisiopatologia
2.
Am J Physiol Regul Integr Comp Physiol ; 312(1): R74-R84, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881400

RESUMO

We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced "whitening" of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1-/-) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1-/- exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1-/- mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1-/- were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis.


Assuntos
Dieta Ocidental/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/fisiopatologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/fisiopatologia , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Animais , Peso Corporal , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/fisiopatologia , Proteína Desacopladora 1/genética
3.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R594-602, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26180183

RESUMO

Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype.


Assuntos
Adiposidade , Gordura Intra-Abdominal/fisiopatologia , Atividade Motora , Obesidade/fisiopatologia , Comportamento Sedentário , Adipocinas/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/imunologia , Obesidade/metabolismo , Estresse Oxidativo , Fenótipo , Corrida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA