RESUMO
BACKGROUND: Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The nine-haem cytochrome c (9Hcc), previously described as having 12 haem groups, was isolated from cells of Desulfovibrio desulfuricans ATCC 27774, grown under both nitrate- and sulphate-respiring conditions. RESULTS: Models for the primary and three-dimensional structures of this cytochrome, containing 292 amino acid residues and nine haem groups, were derived using the multiple wavelength anomalous dispersion phasing method and refined using 1.8 A diffraction data to an R value of 17.0%. The nine haem groups are arranged into two tetrahaem clusters, with Fe-Fe distances and local protein fold similar to tetrahaem cytochromes c3, while the extra haem is located asymmetrically between the two clusters. CONCLUSIONS: This is the first known three-dimensional structure in which multiple copies of a tetrahaem cytochrome c3-like fold are present in the same polypeptide chain. Sequence homology was found between this cytochrome and the C-terminal region (residues 229-514) of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough (DvH Hmc). A new haem arrangement in domains III and IV of DvH Hmc is proposed. Kinetic experiments showed that 9Hcc can be reduced by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774, but that this reduction is faster in the presence of tetrahaem cytochrome c3. As Hmc has never been found in D. desulfuricans ATCC 27774, we propose that 9Hcc replaces it in this organism and is therefore probably involved in electron transfer across the membrane.
Assuntos
Grupo dos Citocromos c/química , Desulfovibrio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Transporte de Elétrons , Heme/química , Hemeproteínas/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de AminoácidosRESUMO
A NMR and magnetic susceptibility study of the oxidized and reduced states of three different oligomers (forms) of a [4Fe-4S] ferrodoxin protein from Desulphovibrio gigas, FdI, FdI', and FdII was carried out. FdI and FdI' are different trimers and FdII a tetramer of the same basic subunit. A probable assignment of the contact shifted resonances is indicated. Since the temperature dependences of the contact shifted responances associated with each [4Fe-4S] are not all similar a delocalized model for the spin densities on the 4Fe does not apply. The exchange rate between oxidized and reduced states is slow on the NMR time scale. The three oligomers are not magnetically equivalent. Using the "three state hypothesis" terminology it is shown that FdIox is predominantly in the C2- state and changes upon reduction into the C3- state, while FdIIox is in the C- state and changes into the C2- state. FdI' does not easily fit into this classification. This study shows a similarity of magnetic behaviour between FdI and bacterial ferredoxins (e.g. Bacillus polymyxa) and between FdII and HiPIP from Chromatium sp. The influence of the quaternary structure on the stabilization of the different oxidation states of ferredoxins as well as on their redox potentials is discussed.
Assuntos
Desulfovibrio/metabolismo , Ferredoxinas , Ferredoxinas/isolamento & purificação , Cinética , Espectroscopia de Ressonância Magnética , Matemática , Oxirredução , Conformação Proteica , TemperaturaRESUMO
EPR spectroscopy in conjunction with oxidation-reduction potentiometry has been used to determine the half-reduction potentials of the four hemes of cytochrome c3. As predicted, the four hemes of cytochrome c3 have different mid-point potentials. The Em values are: Heme I,--284 mV; Heme II,--310 mV; Heme III,--324 mV and Heme IV,--319 mV. The n-values in each case was near one.
Assuntos
Grupo dos Citocromos c , Desulfovibrio/enzimologia , Heme , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , PotenciometriaRESUMO
A purified preparation of hydrogenase from D. gigas was inactive toward ferredoxin, flavodoxin or rubredoxin in the absence of cytochrome c3 (M.W. 13,000), in an atmosphere of hydrogen, although direct reduction of benzyl viologen or FMN was possible. The hydrogen evolution reaction from dithionite was possible with methyl viologen. The same reaction also occured with cytochrome c3 (M.W. 13,000) or cytochrome c3 (M.W. 26,000). Addition of either ferredoxin or flavodoxin did not accelerate the reaction.
Assuntos
Desulfovibrio/enzimologia , Oxirredutases/metabolismo , Transporte de Elétrons , Hidrogênio , Peso Molecular , Oxirredutases/isolamento & purificação , Especificidade por SubstratoAssuntos
Bacillaceae/metabolismo , Grupo dos Citocromos c/isolamento & purificação , Desulfovibrio/metabolismo , Transporte de Elétrons , Oxirredutases/isolamento & purificação , Sulfatos/metabolismo , Aminoácidos/análise , Grupo dos Citocromos c/metabolismo , Ferredoxinas/isolamento & purificação , Ferredoxinas/metabolismo , Peso Molecular , Oxirredução , Oxirredutases/metabolismoRESUMO
Different electron carriers of the non-desulfoviridin-containing, sulfate-reducing bacterium Desulfovibrio desulfuricans (Norway strain) have been studied. Two nonheme iron proteins, ferredoxin and rubredoxin, have been purified. This ferredoxin contains four atoms of non-heme iron and acid-labile sulfur and six residues of cysteine per molecule. Its amino acid composition suggests that it is homologous with the other Desulfovibrio ferredoxins. The rubredoxin is also an acidic protein of 6,000 molecular weight and contains one atom of iron and four cysteine residues per molecule. The amino acid composition and molecular weight of the cytochrome c3 from D. desulfuricans (strain Norway 4) are reported. Its spectral properties are very similar to those of the other cytochromes c3 (molecular weight, 13,000) of Desulfovibrio and show that it contains four hemes per molecule. This cytochrome has a very low redox potential and acts as a carrier in the coupling of hydrogenase and thiosulfate reductase in extracts of Desulfovibrio gigas and Desulfovibrio desulfuricans (Norway strain) in contrast to D. gigas cytochrome c3 (molecular weight, 13,000). A comparison of the activities of the cytochrome c3 (molecular weight, 13,000) of D. gigas and that of D. desulfuricans in this reaction suggests that these homologous proteins can have different specificity in the electron transfer chain of these bacteria.
Assuntos
Grupo dos Citocromos c/isolamento & purificação , Desulfovibrio/análise , Ferredoxinas/isolamento & purificação , Rubredoxinas/isolamento & purificação , Aminoácidos/análise , Grupo dos Citocromos c/metabolismo , Desulfovibrio/metabolismo , Transporte de Elétrons , Ferredoxinas/análise , Ferredoxinas/metabolismo , Ferro/análise , Peso Molecular , Rubredoxinas/metabolismo , Especificidade da EspécieRESUMO
The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.