Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(11): 3276-3285, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946623

RESUMO

Improving and stabilizing the quality of seed proteins are of growing interest in the current food and agroecological transitions. Sulfur is a key determinant of this quality since it is essential for the synthesis of sulfur-rich proteins in seeds. A lack of sulfur provokes drastic changes in seed protein composition, negatively impacting the nutritional and functional properties of proteins, and leading in some cases to diseases or health problems in humans. Sulfur also plays a crucial role in stress tolerance through the synthesis of antioxidant or protective molecules. In the context of climate change, questions arise regarding the trade-off between seed yield and seed quality with respect to sulfur availability and use by crops that represent important sources of proteins for human nutrition. Here, we review recent work obtained in legumes, cereals, as well as in Arabidopsis, that present major advances on: (i) the interaction between sulfur nutrition and environmental or nutritional stresses with regard to seed yield and protein composition; (ii) metabolic pathways that merit to be targeted to mitigate negative impacts of environmental stresses on seed protein quality; and (iii) the importance of sulfur homeostasis for the regulation of seed protein composition and its interplay with seed redox homeostasis.


Assuntos
Arabidopsis , Sementes , Humanos , Sementes/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Enxofre/metabolismo , Estresse Fisiológico
2.
Plant J ; 106(5): 1298-1311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33733554

RESUMO

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.


Assuntos
Medicago truncatula/genética , Proteínas de Armazenamento de Sementes/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Globulinas/genética , Globulinas/metabolismo , Medicago truncatula/fisiologia , Metionina/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Vitamina U/metabolismo
3.
J Exp Bot ; 72(7): 2611-2626, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33558872

RESUMO

Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.


Assuntos
Pisum sativum , Proteômica , Antioxidantes , Desidratação , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Enxofre/metabolismo
4.
J Exp Bot ; 70(16): 4183-4196, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31055598

RESUMO

A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.


Assuntos
Produtos Agrícolas/metabolismo , Minerais/metabolismo , Enxofre/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Nutrientes/metabolismo
5.
J Exp Bot ; 70(16): 4287-4304, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30855667

RESUMO

Water stress and sulfur (S) deficiency are two constraints increasingly faced by crops due to climate change and low-input agricultural practices. To investigate their interaction in the grain legume pea (Pisum sativum), sulfate was depleted at the mid-vegetative stage and a moderate 9-d water stress period was imposed during the early reproductive phase. The combination of the stresses impeded reproductive processes in a synergistic manner, reducing seed weight and seed number, and inducing seed abortion, which highlighted the paramount importance of sulfur for maintaining seed yield components under water stress. On the other hand, the moderate water stress mitigated the negative effect of sulfur deficiency on the accumulation of S-rich globulins (11S) in seeds, probably due to a lower seed sink strength for nitrogen, enabling a readjustment of the ratio of S-poor (7S) to 11S globulins. Transcriptome analysis of developing seeds at the end of the combined stress period indicated that similar biological processes were regulated in response to sulfur deficiency and to the combined stress, but that the extent of the transcriptional regulation was greater under sulfur deficiency. Seeds from plants subjected to the combined stresses showed a specific up-regulation of a set of transcription factor and SUMO ligase genes, indicating the establishment of unique regulatory processes when sulfur deficiency is combined with water stress.


Assuntos
Globulinas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Enxofre/metabolismo , Água/metabolismo , Globulinas/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sementes/genética
6.
Plant Cell ; 28(11): 2735-2754, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27956585

RESUMO

The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1 Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sementes/fisiologia , Fatores de Transcrição/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sementes/genética , Fatores de Transcrição/genética
7.
New Phytol ; 214(4): 1597-1613, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322451

RESUMO

Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.


Assuntos
Globulinas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Sementes/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Globulinas/genética , Mutação , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteômica/métodos , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Exp Bot ; 68(9): 2083-2098, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444347

RESUMO

Fluxes through metabolic pathways reflect the integration of genetic and metabolic regulations. While it is attractive to measure all the mRNAs (transcriptome), all the proteins (proteome), and a large number of the metabolites (metabolome) in a given cellular system, linking and integrating this information remains difficult. Measurement of metabolome-wide fluxes (termed the fluxome) provides an integrated functional output of the cell machinery and a better tool to link functional analyses to plant phenotyping. This review presents and discusses sets of methodologies that have been developed to measure the fluxome. First, the principles of metabolic flux analysis (MFA), its 'short time interval' version Inst-MFA, and of constraints-based methods, such as flux balance analysis and kinetic analysis, are briefly described. The use of these powerful methods for flux characterization at the cellular scale up to the organ (fruits, seeds) and whole-plant level is illustrated. The added value given by fluxomics methods for unravelling how the abiotic environment affects flux, the process, and key metabolic steps are also described. Challenges associated with the development of fluxomics and its integration with 'omics' for thorough plant and organ functional phenotyping are discussed. Taken together, these will ultimately provide crucial clues for identifying appropriate target plant phenotypes for breeding.


Assuntos
Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Plantas/metabolismo
9.
Plant J ; 81(3): 453-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492260

RESUMO

The endosperm plays a pivotal role in the integration between component tissues of molecular signals controlling seed development. It has been shown to participate in the regulation of embryo morphogenesis and ultimately seed size determination. However, the molecular mechanisms that modulate seed size are still poorly understood especially in legumes. DASH (DOF Acting in Seed embryogenesis and Hormone accumulation) is a DOF transcription factor (TF) expressed during embryogenesis in the chalazal endosperm of the Medicago truncatula seed. Phenotypic characterization of three independent dash mutant alleles revealed a role for this TF in the prevention of early seed abortion and the determination of final seed size. Strong loss-of-function alleles cause severe defects in endosperm development and lead to embryo growth arrest at the globular stage. Transcriptomic analysis of dash pods versus wild-type (WT) pods revealed major transcriptional changes and highlighted genes that are involved in auxin transport and perception as mainly under-expressed in dash mutant pods. Interestingly, the exogenous application of auxin alleviated the seed-lethal phenotype, whereas hormonal dosage revealed a much higher auxin content in dash pods compared with WT. Together these results suggested that auxin transport/signaling may be affected in the dash mutant and that aberrant auxin distribution may contribute to the defect in embryogenesis resulting in the final seed size phenotype.


Assuntos
Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Medicago truncatula/embriologia , Medicago truncatula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Cell Proteomics ; 13(5): 1165-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554741

RESUMO

In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase ß-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of ß-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate synthase, which is essential for the use of fatty acids during seedling establishment.


Assuntos
Brassica napus/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/química , Enxofre/metabolismo , Adaptação Biológica , Brassica napus/fisiologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteômica , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
11.
Plant J ; 76(6): 982-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118112

RESUMO

Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.


Assuntos
Adaptação Fisiológica , Medicago truncatula/fisiologia , Sementes/fisiologia , Enxofre/deficiência , Transporte Biológico , Biomassa , Metabolismo dos Carboidratos , Carbono/metabolismo , Clorofila/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/metabolismo , Oligossacarídeos/metabolismo , Especificidade de Órgãos , Oxirredução , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , RNA Mensageiro/genética , Rafinose/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sulfatos/metabolismo , Enxofre/metabolismo
12.
Planta ; 235(6): 1431-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535379

RESUMO

Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.


Assuntos
Proteínas de Transporte de Ânions/genética , Medicago truncatula/genética , Micorrizas/fisiologia , Estresse Fisiológico/genética , Enxofre/toxicidade , Simbiose/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas de Transporte de Ânions/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Micorrizas/efeitos dos fármacos , Especificidade de Órgãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Simbiose/efeitos dos fármacos
13.
Plant Physiol ; 154(2): 913-26, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702726

RESUMO

Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sementes/metabolismo , Sulfatos/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Glucosinolatos/análise , Mutagênese Insercional , Mutação , Fenótipo , Proteoma/metabolismo , RNA de Plantas/genética , Enxofre/metabolismo
14.
Plant Cell Environ ; 34(9): 1473-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21554325

RESUMO

Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.


Assuntos
Medicago truncatula/fisiologia , Oligossacarídeos/metabolismo , Locos de Características Quantitativas/fisiologia , Sementes/fisiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Secas , Marcadores Genéticos , Variação Genética , Germinação , Hipocótilo/crescimento & desenvolvimento , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Rafinose/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sacarose/metabolismo
15.
BMC Plant Biol ; 10: 78, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20426829

RESUMO

BACKGROUND: Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. RESULTS: In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. CONCLUSIONS: This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds.


Assuntos
Adaptação Fisiológica , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética , Proteoma/metabolismo , Sementes/metabolismo , Sulfatos/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Compartimento Celular , DNA Bacteriano/genética , Eletroforese em Gel Bidimensional , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Mutagênese Insercional/genética , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento
16.
Front Plant Sci ; 11: 730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595663

RESUMO

Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability. There is growing evidence that plant microbiota contribute to plant iron nutrition and might account for variations in the sensitivity of pea cultivars to iron deficiency and in fine to seed nutritional quality. Pyoverdine (pvd) siderophores synthesized by pseudomonads have been shown to promote iron nutrition in various plant species (Arabidopsis, clover and grasses). This study aimed to investigate the impact of three distinct ferripyoverdines (Fe-pvds) on iron status and the ionome of two pea cultivars (cv.) differing in their tolerance to IDC, (cv. S) being susceptible and (cv. T) tolerant. One pvd came from a pseudomonad strain isolated from the rhizosphere of cv. T (pvd1T), one from cv. S (pvd2S), and the third from a reference strain C7R12 (pvdC7R12). The results indicated that Fe-pvds differently impacted pea iron status and ionome, and that this impact varied both according to the pvd and the cultivar. Plant iron concentration was more increased by Fe-pvds in cv. T than in cv. S. Iron allocation within the plant was impacted by Fe-pvds in cv. T. Furthermore, Fe-pvds had the greatest favorable impact on iron nutrition in the cultivar from which the producing strain originated. This study evidences the impact of bacterial siderophores on pea iron status and pea ionome composition, and shows that this impact varies with the siderophore and host-plant cultivar, thereby emphasizing the specificity of these plant-microorganisms interactions. Our results support the possible contribution of pyoverdine-producing pseudomonads to differences in tolerance to IDC between pea cultivars. Indeed, the tolerant cv. T, as compared to the susceptible cv. S, benefited from bacterial siderophores for its iron nutrition to a greater extent.

17.
Nat Commun ; 11(1): 492, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980615

RESUMO

White lupin (Lupinus albus L.) is an annual crop cultivated for its protein-rich seeds. It is adapted to poor soils due to the production of cluster roots, which are made of dozens of determinate lateral roots that drastically improve soil exploration and nutrient acquisition (mostly phosphate). Using long-read sequencing technologies, we provide a high-quality genome sequence of a cultivated accession of white lupin (2n = 50, 451 Mb), as well as de novo assemblies of a landrace and a wild relative. We describe a modern accession displaying increased soil exploration capacity through early establishment of lateral and cluster roots. We also show how seed quality may have been impacted by domestication in term of protein profiles and alkaloid content. The availability of a high-quality genome assembly together with companion genomic and transcriptomic resources will enable the development of modern breeding strategies to increase and stabilize white lupin yield.


Assuntos
Genoma de Planta , Lupinus/genética , Sementes/fisiologia , Análise de Sequência de DNA , Solo , Alcaloides/química , Alcaloides/metabolismo , Centrômero/genética , Ecótipo , Evolução Molecular , Dosagem de Genes , Duplicação Gênica , Variação Genética , Variação Estrutural do Genoma , Lupinus/crescimento & desenvolvimento , Modelos Genéticos , Anotação de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sintenia/genética , Transcriptoma/genética
18.
Plant J ; 56(3): 398-410, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18643982

RESUMO

Despite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatin-modifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.


Assuntos
Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Sementes/metabolismo , Cromatografia Líquida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Medicago truncatula/crescimento & desenvolvimento , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
19.
Front Plant Sci ; 10: 1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440268

RESUMO

Pea (Pisum sativum L.) is an important source of dietary proteins. Nutrient recycling from leaves contributes to the accumulation of seed proteins and is a pivotal determinant of protein yields in this grain legume. The aim of this study was to unveil the transcriptional regulations occurring in pea leaves before the sharp decrease in chlorophyll breakdown. As a prelude to this study, a time-series analysis of 15N translocation at the whole plant level was performed, which indicated that nitrogen recycling among organs was highly dynamic during this period and varied depending on nitrate availability. Leaves collected on vegetative and reproductive nodes were further analyzed by transcriptomics. The data revealed extensive transcriptome changes in leaves of reproductive nodes during early seed development (from flowering to 14 days after flowering), including an up-regulation of genes encoding transporters, and particularly of sulfate that might sustain sulfur metabolism in leaves of the reproductive part. This developmental period was also characterized by a down-regulation of cell wall-associated genes in leaves of both reproductive and vegetative nodes, reflecting a shift in cell wall structure. Later on, 27 days after flowering, genes potentially switching the metabolism of leaves toward senescence were pinpointed, some of which are related to ribosomal RNA processing, autophagy, or transport systems. Transcription factors differentially regulated in leaves between stages were identified and a gene co-expression network pointed out some of them as potential regulators of the above-mentioned biological processes. The same approach was conducted in Medicago truncatula to identify shared regulations with this wild legume species. Altogether the results give a global view of transcriptional events in leaves of legumes at early reproductive stages and provide a valuable resource of candidate genes that could be targeted by reverse genetics to improve nutrient remobilization and/or delay catabolic processes leading to senescence.

20.
Nat Genet ; 51(9): 1411-1422, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477930

RESUMO

We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Fabaceae/genética , Genoma de Planta , Pisum sativum/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fabaceae/classificação , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Fenótipo , Filogenia , Padrões de Referência , Sequências Repetitivas de Ácido Nucleico , Proteínas de Armazenamento de Sementes/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA