Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Physiol Genomics ; 55(12): 587-605, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746713

RESUMO

In this study, postsmolt male Atlantic salmon, previously identified as low responders (LRs) or high responders (HRs) based on poststress cortisol levels, had their head kidney and liver sampled at 12°C and 20°C before injection (time 0) and after injection (i.e., at 12- and 24-h postinjection, respectively) with either Forte Micro (a multivalent vaccine containing bacterin, to capture peak antibacterial responses) or an equal volume of PBS. Quantitative real-time PCR (qPCR) was then used to measure the expression of 15 biomarker genes in the head kidney and 12 genes in the liver at each temperature/sampling point. Target transcripts were chosen that were related to growth, stress, and innate antibacterial immune responses. Many temperature, phenotype, and injection effects were found for individual genes within these three broad categories, and multivariate statistical analyses (i.e., principal component analysis and permutational multivariate analysis of variance) were used to look for overall patterns in transcript expression. These analyses revealed that HR salmon at 20°C mounted a more robust response (P < 0.05) for the 10 head kidney immune-related transcripts when injected with Forte Micro than LR salmon. In contrast, the seven liver stress-related transcripts displayed a greater response (P = 0.057) in LR versus HR fish with Forte Micro at 12°C. Overall, although this research did find some differences between LR and HR fish, it does not provide strong (conclusive) evidence that the selection of a particular phenotype would have major implications for the health of salmon over the temperature range examined.NEW & NOTEWORTHY This is the first paper to describe the impact of both temperature and bacterial stimulation on head kidney and liver transcript expression in Atlantic salmon characterized as LRs versus HRs. Notably, we found that HR salmon at 20°C mounted a more robust innate antibacterial immune response than LR salmon. In addition, LR fish at 12°C may (P = 0.057) exhibit higher expression of stress-related transcripts in response to vaccine injection relative to HR fish.


Assuntos
Salmo salar , Animais , Masculino , Salmo salar/genética , Vacinas Bacterianas , Temperatura , Expressão Gênica , Fenótipo , Biomarcadores , Antibacterianos
2.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622446

RESUMO

In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.


Assuntos
Salmo salar , Animais , Temperatura , Aclimatação/fisiologia , Bradicardia , Hipóxia , Oxigênio
3.
J Exp Biol ; 226(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661722

RESUMO

We investigated how acclimation to 8, 4 and 1°C, and acute cooling from 8  to 1°C, affected the Atlantic salmon's aerobic and anaerobic metabolism, and cardiac function, during a critical swim speed (Ucrit) test. This study revealed several interesting temperature-dependent effects. First, while differences in resting heart rate (fH) between groups were predictable based on previous research (range ∼28-65 beats  min-1), with values for 1°C-acclimated fish slightly higher than those of acutely exposed conspecifics, the resting cardiac output () of 1°C-acclimated fish was much lower and compensated for by a higher resting blood oxygen extraction (MO2/). In contrast, the acutely exposed fish had a ∼2-fold greater resting stroke volume (VS) compared with that of the other groups. Second, increases in fH (1.2- to 1.4-fold) contributed little to during the Ucrit test, and the contributions of (VS) versus MO2/ to aerobic scope (AS) were very different in the two groups tested at 1°C (1°C-acclimated and 8-1°C fish). Finally, Ucrit was 2.08 and 1.69 body lengths (BL) s-1 in the 8 and 4°C-acclimated groups, but only 1.27 and 1.44 BL s-1 in the 1°C-acclimated and 8-1°C fish, respectively - this lower value in 1°C versus 8-1°C fish despite higher values for maximum metabolic rate and AS. These data: support recent studies which suggest that the capacity to increase fH is constrained at low temperatures; show that cardiorespiratory function at cold temperatures, and its response to increased demands, depends on exposure duration; and suggest that AS does not constrain swimming capacity in salmon when chronically exposed to temperatures approaching their lower limit.


Assuntos
Salmo salar , Animais , Temperatura Baixa , Natação , Temperatura , Aclimatação
4.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35076075

RESUMO

Fish increase heart rate (fH), not stroke volume (VS), when acutely warmed as a way to increase cardiac output (Q). To assess whether aspects of myocardial function may have some basis in determining temperature-dependent cardiac performance, we measured work and power (shortening, lengthening and net) in isolated segments of steelhead trout (Oncorhynchus mykiss) ventricular muscle at the fish's acclimation temperature (14°C), and at 22°C, when subjected to increased rates of contraction (30-105 min-1, emulating increased fH) and strain amplitude (8-14%, mimicking increased VS). At 22°C, shortening power (indicative of Q) increased in proportion to fH, and the work required to re-lengthen (stretch) the myocardium (fill the heart) was largely independent of fH. In contrast, the increase in shortening power was less than proportional when strain was augmented, and lengthening work approximately doubled when strain was increased. Thus, the derived relationships between fH, strain and myocardial shortening power and lengthening work, suggest that increasing fH would be preferable as a mechanism to increase Q at high temperatures, or in fact may be an unavoidable response given constraints on muscle mechanics as temperatures rise. Interestingly, at 14°C, lengthening work increased substantially at higher fH, and the duration of lengthening (i.e. diastole) became severely constrained when fH was increased. These data suggest that myocardial contraction/twitch kinetics greatly constrain maximal fH at cool temperatures, and may underlie observations that fish elevate VS to an equal or greater extent than fH to meet demands for increased Q at lower temperatures.


Assuntos
Miocárdio , Oncorhynchus mykiss , Aclimatação , Animais , Coração/fisiologia , Frequência Cardíaca/fisiologia , Oncorhynchus mykiss/fisiologia , Temperatura
5.
Fish Shellfish Immunol ; 130: 479-489, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162774

RESUMO

Sablefish (Anoplopoma fimbria) are an emerging aquaculture species native to the continental shelf of the northern Pacific Ocean. There is limited information on both innate and adaptive immunity for this species and new tools are needed to determine antibody response following vaccination or disease outbreaks. In this paper, a monoclonal antibody, UI-25A, specific to sablefish IgM was produced in mice. Western blotting confirmed UI-25A recognizes the heavy chain of IgM and does not cross react to proteins or carbohydrates in serum of four other teleost species. An ELISA was developed to measure Aeromonas salmonicida specific IgM in the plasma of sablefish from a previous experiment where fish were immunized with a proprietary A. salmonicida vaccine. UI-25A was used in Western blot analyses to identify immunogenic regions of A. salmonicida recognized by this specific IgM from vaccinated sablefish. Immunofluorescent staining also demonstrated the ability of UI-25A to recognize membrane-bound IgM and identify IgM + cells in the head kidney. These results demonstrate the usefulness of UI-25A as a tool to improve the understanding of antibody-mediated immunity in sablefish as well as to provide valuable information for vaccine development and expansion of aquaculture efforts for this fish species.


Assuntos
Anticorpos Monoclonais , Perciformes , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Carboidratos , Ensaio de Imunoadsorção Enzimática/veterinária , Peixes/metabolismo , Imunoglobulina M/metabolismo , Camundongos , Coloração e Rotulagem
6.
Aquac Nutr ; 2022: 6336060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860469

RESUMO

The salmon aquaculture industry must be proactive at developing mitigation tools/strategies to offset the potential negative impacts of climate change. Therefore, this study examined if additional dietary cholesterol could enhance salmon production at elevated temperatures. We hypothesized that supplemental cholesterol could aid in maintaining cell rigidity, reducing stress and the need to mobilize astaxanthin muscle stores, and improving salmon growth and survival at high rearing temperatures. Accordingly, postsmolt female triploid salmon were exposed to an incremental temperature challenge (+0.2°C day-1) to mimic conditions that they experience in sea cages in the summer, with temperature held at both 16 and 18°C for several weeks [i.e., 3 weeks at 16°C, followed by an increase at 0.2°C day-1 to 18°C (10 days), then 5 weeks at 18°C] to prolong their exposure to elevated temperatures. From 16°C onwards, the fish were fed either a control diet, or one of two nutritionally equivalent experimental diets containing supplemental cholesterol [+1.30%, experimental diet #1 (ED1); or +1.76%, experimental diet #2 (ED2)]. Adding cholesterol to the diet did not affect the salmon's incremental thermal maximum (ITMax), growth, plasma cortisol, or liver stress-related transcript expression. However, ED2 appeared to have a small negative impact on survival, and both ED1 and ED2 reduced fillet "bleaching" above 18°C as measured using SalmoFan™ scores. Although the current results suggest that supplementing salmon diets with cholesterol would have few/minimal benefits for the industry, ≤ 5% of the female triploid Atlantic salmon used in this study irrespective of diet died before temperature reached 22°C. These latter data suggest that it is possible to produce all female populations of reproductively sterile salmon that can withstand summer temperatures in Atlantic Canada.

7.
BMC Genomics ; 22(1): 261, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845767

RESUMO

BACKGROUND: Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week- 1), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon's hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR. RESULTS: Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (hsp90aa1, serpinh1), apoptosis (casp8, jund, jak2) and immune responses (apod, c1ql2, epx) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance. CONCLUSION: Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.


Assuntos
Salmo salar , Transcriptoma , Animais , Biologia Computacional , Hipóxia/genética , Salmo salar/genética , Temperatura
8.
Proc Biol Sci ; 288(1946): 20202340, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715435

RESUMO

Studies of heart function and metabolism have been used to predict the impact of global warming on fish survival and distribution, and their susceptibility to acute and chronic temperature increases. Yet, despite the fact that hypoxia and high temperatures often co-occur, only one study has examined the effects of hypoxia on fish thermal tolerance, and the consequences of hypoxia for fish cardiac responses to acute warming have not been investigated. We report that sablefish (Anoplopoma fimbria) did not increase heart rate or cardiac output when warmed while hypoxic, and that this response was associated with reductions in maximum O2 consumption and thermal tolerance (CTmax) of 66% and approximately 3°C, respectively. Further, acclimation to hypoxia for four to six months did not substantially alter the sablefish's temperature-dependent physiological responses or improve its CTmax. These results provide novel, and compelling, evidence that hypoxia can impair the cardiac and metabolic response to increased temperatures in fish, and suggest that some coastal species may be more vulnerable to climate change-related heat waves than previously thought. Further, they support research showing that cross-tolerance and physiological plasticity in fish following hypoxia acclimation are limited.


Assuntos
Temperatura Alta , Perciformes , Aclimatação , Animais , Hipóxia , Folhas de Planta
9.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R588-R610, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501888

RESUMO

Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function/performance of myocardial strips from normoxic- and hypoxic-acclimated (40% air saturation; ∼8 kPa O2) trout at several frequencies (20-80 contractions·min-1) and two muscle strain amplitudes (8% and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of 1) nitric oxide synthase (NOS) produced NO [by blocking NOS with 10-4 M NG-monomethyl-l-arginine (l-NMMA)] and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8%-10% and decreased mass-specific net power by ∼35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising finding of the current study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain, 10-4 SNP resulted in a decrease in net power of ∼30% at 20 min-1 but an increase of ∼20% at 80 min-1, and this effect was magnified at 14% strain. This research suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids, is the first to report the high frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes, and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatiotemporally.


Assuntos
Aclimatação , Hipóxia/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/metabolismo , Hipóxia/fisiopatologia , Cinética , Contração Miocárdica/efeitos dos fármacos , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Guanilil Ciclase Solúvel/antagonistas & inibidores , Guanilil Ciclase Solúvel/metabolismo
10.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350949

RESUMO

We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.


Assuntos
Salmonidae , Animais , Contração Muscular , Músculo Esquelético , Estresse Oxidativo , Temperatura
11.
J Therm Biol ; 101: 103102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879919

RESUMO

Fish can be identified as either low responders (LR) or high responders (HR) based on post-stress cortisol levels and whether they exhibit a proactive or reactive stress coping style, respectively. In this study, male Atlantic salmon (Salmo salar) from 17 families reared at 9 °C were repeatedly exposed to an acute handling stress over a period of four months, with plasma cortisol levels measured at 1 h post-stress. Fish were identified as either LR or HR if the total Z-score calculated from their cortisol responses fell into the lower or upper quartile ranges, respectively; with intermediate responders (IR) classified as the remainder. Salmon characterized as LR, IR or HR were then subjected to an incremental thermal challenge, where temperature was raised at 0.2 °C day-1 from their acclimation temperature (12 °C) to mimic natural sea-cage farming conditions during the summer in Newfoundland. Interestingly, feed intake remained high up to 22 °C, while previous studies have shown a decrease in salmon appetite after ∼16-18 °C. After the first three mortalities were recorded at elevated temperature, a subset of LR and HR salmon were exposed to another acute handling stress event at 23.6 °C. Basal and post-stress measurements of plasma cortisol, glucose and lactate did not differ between stress response phenotypes at this temperature. In the end, the average incremental thermal maximum (ITMax) of LR and HR fish was not different (25.1 °C). In comparison, the critical thermal maximum (CTMax; temperature increased at 2 °C h-1) of the remaining IR fish that had been held at 12 °C was 28.5 °C. Collectively, these results: 1) show that this population of Atlantic salmon is very thermally tolerant, and further question the relevance of CTMax in assessing responses to real-world temperature changes; and 2) indicate that characterization of stress phenotype at 9 °C is not predictive of their stress response or survival at high temperatures. Therefore, selection of fish based on phenotypic stress response at low temperatures may not be beneficial to incorporate into Atlantic salmon breeding programs, especially if the goal is to improve growth performance and survival at high temperatures in sea-cages.


Assuntos
Salmo salar/fisiologia , Temperatura , Termotolerância , Animais , Glicemia/análise , Hematócrito , Hemoglobinas/análise , Hidrocortisona/sangue , Ácido Láctico/sangue , Masculino , Fenótipo , Salmo salar/sangue , Estresse Fisiológico , Aumento de Peso
12.
Fish Shellfish Immunol ; 104: 557-566, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592927

RESUMO

Effective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation. Groups of 40 fish were intraperitoneally (ip) injected with different doses of A. salmonicida J410 isolated from infected sablefish to calculate the median lethal dose (LD50). Samples of blood, head kidney, spleen, brain, and liver were also collected at different time points to determine the infection kinetics. The LD50 was estimated as ~3 × 105 CFU/dose. To evaluate the immune protection provided by an autogenous vaccine and two commercial vaccines in a common garden experimental design, 140 fish were PIT-tagged, vaccinated and distributed equally into 4 tanks (35 fish for each group, including a control group). Blood samples were taken every 2 weeks to evaluate IgM titers. At 10 weeks post-immunization, all groups were ip challenged with 100 times the calculated LD50 for A. salmonicida J410. A. salmonicida was detected after 5 days post-infection (dpi) in all collected tissues. At 30 days post-challenge the relative percentage survival (RPS) with respect to the control group was calculated for each vaccine. The RPS for the bacterin mix was 65.22%, for Forte Micro 4® vaccine was 56.52% and for Alpha Ject Micro 4® was 30.43%, and these RPS values were reflected by A. salmonicida tissue colonization levels at 10 days post-challenge. Total IgM titers peaked at 6-8 weeks post-immunization, where the autogenous vaccine group showed the highest IgM titers and these values were consistent with the RPS data. Also, we determined that the A. salmonicida A-layer binds to immunoglobulins F(ab)' in a non-specific fashion, interfering with immune assays and potentially vaccine efficacy. Our results indicate that vaccine design influences sablefish immunity and provide a guide for future sablefish vaccine programs.


Assuntos
Doenças dos Peixes/imunologia , Furunculose/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Vacinação/veterinária , Aeromonas salmonicida/fisiologia , Animais , Doenças dos Peixes/microbiologia , Peixes , Furunculose/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Injeções Intraperitoneais/veterinária , Perciformes , Distribuição Aleatória
13.
J Therm Biol ; 68(Pt B): 149-161, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28797475

RESUMO

It has been suggested that exposure to high temperature or hypoxia may confer tolerance to the other oxygen-limited stressor (i.e., 'cross-tolerance'). Thus, we investigated if chronic hypoxia-acclimation (>3 months at 40% air saturation) improved the steelhead trout's critical thermal maximum (CTMax), or affected key physiological variables that could impact upper thermal tolerance. Neither CTMax (24.7 vs. 25.3°C) itself, nor oxygen consumption ( [Formula: see text] ), haematocrit, blood haemoglobin concentration, or heart rate differed between hypoxia- and normoxia-acclimated trout when acutely warmed. However, the cardiac output (Q̇) of hypoxia-acclimated fish plateaued earlier compared to normoxia-acclimated fish due to an inability to maintain stroke volume (SV), and this resulted in a ~50% lower maximum Q̇. Despite this reduced maximum cardiac function, hypoxia-acclimated trout were able to consume more O2 per volume of blood pumped as evidenced by the equivalent [Formula: see text] . These results provide additional evidence that long-term hypoxia improves tissue oxygen utilization, and that this compensates for diminished cardiac pumping capacity. The limited SV in hypoxia-acclimated trout in vivo was not associated with changes in cardiac morphology or in vitro maximum SV, but the affinity and density of myocardial ß-adrenoreceptors were lower and higher, respectively, than in normoxia-acclimated fish. These data suggest that alterations in ventricular filling dynamics or myocardial contractility constrain cardiac function in hypoxia-acclimated fish at high temperatures. Our results do not support (1) 'cross-tolerance' between high temperature and hypoxia when hypoxia is chronic, or (2) that cardiac function is always the determinant of temperature-induced changes in fish [Formula: see text] , and thus thermal tolerance, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) theory.


Assuntos
Anaerobiose/fisiologia , Temperatura Alta , Oncorhynchus mykiss/fisiologia , Estresse Fisiológico/fisiologia , Aclimatação , Animais , Débito Cardíaco/fisiologia , Coração/fisiologia , Fatores de Tempo
14.
J Exp Biol ; 219(Pt 21): 3376-3383, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591316

RESUMO

Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes. Here, we experimentally tested whether reduced oxygen availability due to aquatic hypoxia would decrease the upper thermal limits (i.e. the critical thermal maximum, CTmax) of the estuarine red drum (Sciaenops ocellatus) and the marine lumpfish (Cyclopterus lumpus). In both species, CTmax was independent of oxygen availability over a wide range of oxygen levels despite substantial (>72%) reductions in aerobic scope. These data show that the upper thermal limits of water-breathing ectotherms are not always linked to the capacity for oxygen transport. Consequently, we propose a novel metric for classifying the oxygen dependence of thermal tolerance; the oxygen limit for thermal tolerance (PCTmax ), which is the water oxygen tension (PwO2 ) where an organism's CTmax starts to decline. We suggest that this metric can be used for assessing the oxygen sensitivity of upper thermal limits in water-breathing ectotherms, and the susceptibility of their upper thermal niche boundaries to environmental hypoxia.


Assuntos
Oxigênio/metabolismo , Perciformes/fisiologia , Temperatura , Aerobiose , Animais , Metabolismo Basal/fisiologia , Hipóxia/fisiopatologia , Consumo de Oxigênio , Termotolerância/fisiologia
15.
BMC Genomics ; 16: 1016, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26610852

RESUMO

BACKGROUND: Larval nutrition and growth are key issues for wild and cultured cod. While it was shown previously that larval cod fed wild zooplankton grow faster than those fed only rotifers, the mechanisms involved in this enhanced growth are not completely understood. We used microarrays to identify larval cod transcripts that respond to feeding with small amounts of wild zooplankton (5-10 % of live prey items). The larval transcriptome was compared between 3 treatment groups [fed rotifers (RA), rotifers with protein hydrolysate (RA-PH), or rotifers with zooplankton (RA-Zoo)] at 9-10 mm length [26-30 days post-hatch (dph)] to identify a robust suite of zooplankton-responsive genes (i.e. differentially expressed between RA-Zoo and both other groups). RESULTS: The microarray experiment identified 147 significantly up-regulated and 156 significantly down-regulated features in RA-Zoo compared with both RA and RA-PH. Gene ontology terms overrepresented in the RA-Zoo responsive gene set included "response to selenium ion" and several related to cell division and oxidation-reduction. Ten selenoprotein-encoding genes, and 2 genes involved in thyroid hormone generation, were up-regulated in RA-Zoo compared with both other groups. Hierarchical clustering of RA-Zoo responsive genes involved in oxidation-reduction and selenium homeostasis demonstrated that only the zooplankton treatment had a considerable and consistent impact on the expression of these genes. Fourteen microarray-identified genes were selected for QPCR involving 9-13 mm larvae, and 13 of these were validated as differentially expressed between RA-Zoo and both other groups at ~9 mm. In contrast, in age-matched (34-35 dph; ~11 mm RA and RA-PH, ~13 mm RA-Zoo) and size-matched (~13 mm) older larvae, only 2 and 3 genes, respectively, showed the same direction of RA-Zoo-responsive change as in ~9 mm larvae. CONCLUSIONS: The modulation of genes involved in selenium binding, redox homeostasis, and thyroid hormone generation in ~9 mm RA-Zoo larvae in this study may be in response to the relatively high levels of selenium, iodine, and LC-PUFA (potentially causing oxidative stress) in zooplankton. Nonetheless, only a subset of zooplankton-responsive genes in ~9 mm larvae remained so in older larvae, suggesting that the observed transcriptome changes are largely involved in initiating the period of growth enhancement.


Assuntos
Gadus morhua/genética , Zooplâncton , Animais , Perfilação da Expressão Gênica , Mitose/genética , Oxirredução , RNA Mensageiro/genética
16.
J Exp Biol ; 218(Pt 14): 2269-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26026045

RESUMO

Interleukin (IL)-1ß is associated with hypotension and cardiovascular collapse in mammals during heat stroke, and the mRNA expression of this pro-inflammatory cytokine increases dramatically in the blood of Atlantic cod (Gadus morhua) at high temperatures. These data suggest that release of IL-1ß at high temperatures negatively impacts fish cardiovascular function and could be a primary determinant of upper thermal tolerance in this taxa. Thus, we measured the concentration-dependent response of isolated steelhead trout (Oncorhynchus mykiss) coronary microvessels (<150 µm in diameter) to recombinant (r) IL-1ß at two temperatures (10 and 20°C). Recombinant IL-1ß induced a concentration-dependent vasodilation with vessel diameter increasing by approximately 8 and 30% at 10(-8) and 10(-7) mol l(-1), respectively. However, this effect was not temperature dependent. Both vessel denudation and cyclooxygenase blockade (by indomethacin), but not the nitric oxide (NO) antagonist L-NIO, inhibited the vasodilator effect of rIL-1ß. In contrast, the concentration-dependent dilation caused by the endothelium-dependent calcium ionophore A23187 was completely abolished by L-NIO and indomethacin, suggesting that both NO and prostaglandin signaling mechanisms exist in the trout coronary microvasculature. These data: (1) are the first to demonstrate a functional link between the immune and cardiovascular systems in fishes; (2) suggest that IL-1ß release at high temperatures may reduce systemic vascular resistance, and thus, the capacity of fish to maintain blood pressure; and (3) provide evidence that both NO and prostaglandins play a role in regulating coronary vascular tone, and thus, blood flow.


Assuntos
Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Interleucina-1beta/farmacologia , Óxido Nítrico/metabolismo , Oncorhynchus mykiss/fisiologia , Vasodilatação/fisiologia , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Técnicas In Vitro , Indometacina/farmacologia , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ornitina/análogos & derivados , Ornitina/farmacologia , Prostaglandinas/metabolismo , Proteínas Recombinantes/farmacologia , Temperatura
17.
Fish Shellfish Immunol ; 44(1): 365-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731920

RESUMO

The interferon regulatory factor (IRF) family of genes encodes a group of transcription factors that have important roles not only in regulating the expression of Type I interferons (IFNs) and other genes in the IFN pathway, but also in growth, development and the regulation of oncogenesis. In this study, several IRF family members (Irf4a, Irf4b, Irf7, Irf8, Irf10) in Atlantic cod (Gadus morhua) were characterized at the cDNA and putative amino acid levels, allowing for phylogenetic analysis of these proteins in teleost fish, as well as the development of gene-specific primers used in RT-PCR and quantitative PCR (QPCR) analyses. Two Atlantic cod Irf10 splice variants were identified and their presence confirmed by sequencing of the Irf10 genomic region. RT-PCR showed that Irf7, Irf8 and both Irf10 transcripts were expressed in all 15 cod tissues tested, while Irf4a and Irf4b were absent in some tissues. QPCR analysis of spleen expression expanded upon this, and upon previous work. All IRF transcripts in the study were responsive to stimulation by the viral mimic poly(I:C), and all except Irf4a were responsive to exposure to formalin-killed Aeromonas salmonicida (ASAL). These IRF genes, thus, are likely important in the cod immune response to both viral and bacterial infections. Increased temperature (10 °C to 16 °C) was also observed to modulate the antibacterial responses of all IRF transcripts, and the antiviral responses of Irf4b and Irf10-v2. This research supports earlier studies which reported that elevated temperature modulates the expression of many immune genes in Atlantic cod.


Assuntos
Proteínas de Peixes , Gadus morhua , Fatores Reguladores de Interferon , Aeromonas salmonicida/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Sequência de Bases , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/imunologia , Gadus morhua/metabolismo , Temperatura Alta , Indutores de Interferon/farmacologia , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Dados de Sequência Molecular , Filogenia , Poli I-C/farmacologia , Baço/imunologia , Baço/metabolismo
18.
Gen Comp Endocrinol ; 224: 126-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188716

RESUMO

The cunner (Tautogolabrus adspersus) is a fish with a wide latitudinal distribution that is capable of going into metabolic depression during the winter months, and thus, represents a unique model to investigate the impacts of cold temperatures on the stress response. In this study, we measured resting (pre-stress) plasma cortisol levels in 10 °C and 0 °C acclimated cunner from Newfoundland, and both catecholamine and cortisol levels after they were given a standardized handling stress (i.e. 1 min air exposure). In addition, we cloned and characterized cDNAs for several key genes of the cortisol-axis [cytochrome P450scc, steroidogenic acute regulatory protein (StAR) and a glucocorticoid receptor (GR) most likely to be an ortholog of the teleost GR2], determined the tissue distribution of their transcripts, and measured their constitutive (i.e. pre-stress) transcript levels in individuals acclimated to both temperatures. In cunner acclimated to 0 °C, post-stress epinephrine and norepinephrine levels were much lower (by approximately 9- and 5-fold, respectively) compared to 10 °C acclimated fish, and these fish had relatively low resting cortisol levels (~15 ngml(-1)) and showed a typical post-stress response. In contrast, those acclimated to 10 °C had quite high resting cortisol levels (~75 ngml(-1)) that actually decreased (to ~20 ngml(-1)) post-stress before returning to pre-stress levels. Finally, fish acclimated to 10 °C had higher P450scc transcript levels in the head kidney and lower levels of GR transcript in both the head kidney and liver. Taken together, these results suggest that: (1) temperature has a profound effect on the stress response of this species; and (2) although the ancestors of this species inhabited warm waters (i.e. they are members of the family Labridae), populations of cunner from colder regions may show signs of stress at temperatures as low as 10 °C.


Assuntos
Catecolaminas/sangue , Temperatura Baixa , Peixes/fisiologia , Hidrocortisona/sangue , Fosfoproteínas/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Fosfoproteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano
19.
J Therm Biol ; 44: 110-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086981

RESUMO

To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10°C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24°C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25-200µM at 10 and 20°C. Cardiac morphometrics and mitochondrial respiration at 10°C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200µM ADP increased gradually in mitochondria from females between 10 and 24°C (Q10=1.48), but plateaued in males above 16°C, and this resulted in lower values in males vs. females at 20 and 24°C. At 10°C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24°C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200µM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200µM) was reduced at 20 vs. 10°C in both sexes (Km values 105±7 vs. 68±10µM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100µM ADP at 20°C, whereas males showed a similar effect at 10°C but a much more pronounced effect at 20°C (P:O 1.05 at 25µM ADP vs. 1.78 at 100µMADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20°C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22°C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.


Assuntos
Aclimatação , Temperatura Baixa , Gadus morhua/fisiologia , Mitocôndrias Cardíacas/metabolismo , Animais , Respiração Celular , Feminino , Gadus morhua/metabolismo , Coração/fisiologia , Masculino , Fosforilação Oxidativa , Fatores Sexuais
20.
Dev Comp Immunol ; 156: 105161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38521379

RESUMO

Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the ∼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.


Assuntos
Imunidade Adaptativa , Aeromonas salmonicida , Mudança Climática , Doenças dos Peixes , Animais , Aeromonas salmonicida/imunologia , Aeromonas salmonicida/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Hipóxia/imunologia , Imunidade Inata , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Peixes/imunologia , Peixes/microbiologia , Oxigênio/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Antígenos de Bactérias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA