Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Drug Metab Dispos ; 46(11): 1725-1733, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111622

RESUMO

We investigated whether pheophorbide A (PhA) could serve as a selective breast cancer resistance protein (BCRP) substrate (victim) to screen in vivo using fluorescent live animal imaging for transporter-mediated interactions with orally administered inhibitors (perpetrators), and whether that could be coupled with serum sampling to measure the systemic concentration of PhA with a fast-throughput in vitro fluorescent assay. PhA is a breakdown product of chlorophyll and is highly fluorescent in the near-infrared (NIR) spectrum. Whole-body NIR fluorescence was greater in the Bcrp KO compared with wild-type (WT) mice fed a regular diet containing chlorophyll and PhA, with fluorescence in WT mice confined to the intestine. PhA intestinal enterocyte fluorescence, after removing lumen contents, was greater in Bcrp knockout (KO) mice versus WT mice due to PhA enterocyte absorption and lack of PhA efflux by Bcrp. This difference was eliminated by maintaining the mice on an alfalfa (chlorophyll/PhA)-free diet. The area under the fluorescence ratio-time curve up to 6 hours (AUCFL 0-6 h) of orally administrated PhA was 3.5 times greater in the Bcrp KO mice compared with WT mice, and the PhA serum concentration was 50-fold higher in KO mice. Pretreatment with known BCRP inhibitors lapatinib, curcumin, elacridar, pantoprazole, and sorafenib, at clinically relevant doses, significantly increased PhA AUCFL 0-6 h by 2.4-, 2.3-, 2.2-, 1.5-, and 1.4-fold, respectively, whereas the area under PhA serum concentration-time curve calculated up to 6 hours (AUCSerum 0-6 h) increased by 13.8-, 7.8-, 5.2-, 2.02-, and 1.45-fold, respectively, and corresponded to their hierarchy as in vitro BCRP inhibitors. Our results demonstrate that live animal imaging using PhA can be used to identify BCRP inhibitors and to assess the potential for BCRP-mediated clinical drug-drug interactions.


Assuntos
Clorofila/análogos & derivados , Interações Medicamentosas/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Clorofila/metabolismo , Cães , Fluorescência , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout
2.
Drug Metab Dispos ; 46(7): 1014-1022, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674491

RESUMO

To understand the systemic impact of breast cancer resistance protein (Bcrp) and P-glycoprotein (Pgp) deletion, untargeted metabolomics was performed on cerebral spinal fluid (CSF) and plasma of wild-type (WT) and Pgp and Bcrp double-knockout (dKO) rats anesthetized with ketamine-xylazine. We unexpectedly found elevated ketamine levels in both CSF and plasma of dKO versus WT rats. Therefore, the effect of these transporters was investigated on the 1) oral and intraperitoneal serum pharmacokinetics (PK) of ketamine, using a liquid chromatography method (high-performance liquid chromatography with ultraviolet detection), and 2) the anesthetic effect of ketamine using a duration of loss-of-righting reflex (dLORR) test in WT, Bcrp knockout (KO), Pgp KO, and Pgp/Bcrp dKO mice. The PK data demonstrated a significantly increased oral bioavailability and serum exposure of ketamine in dKO > Pgp KO > Bcrp KO mice compared with WT mice. Intraperitoneal ketamine-induced dLORR was significantly longer in dKO > Pgp KO > Bcrp KO > WT mice compared with WT mice. Inhibition of Bcrp and Pgp in WT mice using the dual Pgp/Bcrp inhibitor elacridar increased the ketamine-induced dLORR compared with vehicle-treated mice. The ketamine intracellular concentration was significantly decreased in Madin-Darby canine kidney II BCRP/PGP cells compared with the parental cells. In total, these results demonstrate that ketamine appears to be a dual Pgp/Bcrp substrate whose PK and pharmacodynamics are affected by Pgp and Bcrp-mediated efflux.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ketamina/farmacologia , Ketamina/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
3.
Drug Metab Dispos ; 43(11): 1646-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26281846

RESUMO

P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.


Assuntos
Encéfalo/metabolismo , Genes Reporter/fisiologia , Luciferases de Vaga-Lume/biossíntese , Coluna Vertebral/metabolismo , Transcrição Gênica/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Diagnóstico por Imagem , Feminino , Humanos , Luciferases de Vaga-Lume/genética , Camundongos , Camundongos Transgênicos
4.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24405701

RESUMO

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Piridonas/síntese química , Tiazóis/síntese química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Ureia/síntese química , Ureia/farmacologia , Administração Oral , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Modelos Animais de Doenças , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridonas/química , Piridonas/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Inibidores da Topoisomerase II/química , Ureia/química
5.
Clin Pharmacol Ther ; 115(3): 422-439, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093583

RESUMO

Subcutaneous (s.c.) administration of monoclonal antibodies (mAbs) can reduce treatment burden for patients and healthcare systems compared with intravenous (i.v.) infusion through shorter administration times, made possible by convenient, patient-centric devices. A deeper understanding of clinical pharmacology principles related to efficacy and safety of s.c.-administered mAbs over the past decade has streamlined s.c. product development. This review presents learnings from key constituents of the s.c. mAb development pathway, including pharmacology, administration variables, immunogenicity, and delivery devices. Restricted mAb transportation through the hypodermis explains their incomplete absorption at a relatively slow rate (pharmacokinetic (PK)) and may impact mAb-cellular interactions and/or onset and magnitude of physiological responses (pharmacodynamic). Injection volumes, formulation, rate and site of injection, and needle attributes may affect PKs and the occurrence/severity of adverse events like injection-site reactions or pain, with important consequences for treatment adherence. A review of immunogenicity data for numerous compounds reveals that incidence of anti-drug antibodies (ADAs) is generally comparable across i.v. and s.c. routes, and complementary factors including response magnitude (ADA titer), persistence over time, and neutralizing antibody presence are needed to assess clinical impact. Finally, four case studies showcase how s.c. biologics have been clinically developed: (i) by implementation of i.v./s.c. bridging strategies to streamline PD-1/PD-L1 inhibitor development, (ii) through co-development with i.v. presentations for anti-severe acute respiratory syndrome-coronavirus 2 antibodies to support rapid deployment of both formulations, (iii) as the lead route for bispecific T cell engagers (BTCEs) to mitigate BTCE-mediated cytokine release syndrome, and (iv) for pediatric patients in the case of dupilumab.


Assuntos
Anticorpos Monoclonais , Tela Subcutânea , Humanos , Criança , Anticorpos Monoclonais/efeitos adversos , Anticorpos Neutralizantes , Administração Intravenosa
6.
Antimicrob Agents Chemother ; 57(6): 2506-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23507276

RESUMO

Beta-lactams, in combination with beta-lactamase inhibitors, are reported to have activity against Mycobacterium tuberculosis bacteria growing in broth, as well as inside the human macrophage. We tested representative beta-lactams belonging to 3 different classes for activity against replicating M. tuberculosis in broth and nonreplicating M. tuberculosis under hypoxia, as well as against streptomycin-starved M. tuberculosis strain 18b (ss18b) in the presence or absence of clavulanate. Most of the combinations showed bactericidal activity against replicating M. tuberculosis, with up to 200-fold improvement in potency in the presence of clavulanate. None of the combinations, including those containing meropenem, imipenem, and faropenem, killed M. tuberculosis under hypoxia. However, faropenem- and meropenem-containing combinations killed strain ss18b moderately. We tested the bactericidal activities of meropenem-clavulanate and amoxicillin-clavulanate combinations in the acute and chronic aerosol infection models of tuberculosis in BALB/c mice. Based on pharmacokinetic/pharmacodynamic indexes reported for beta-lactams against other bacterial pathogens, a cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%TMIC) of 20 to 40% was achieved in mice using a suitable dosing regimen. Both combinations showed marginal reduction in lung CFU compared to the late controls in the acute model, whereas both were inactive in the chronic model.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Antibacterianos , Ácido Clavulânico , Mycobacterium tuberculosis/efeitos dos fármacos , Tienamicinas , Tuberculose Pulmonar/tratamento farmacológico , beta-Lactamas , Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Combinação Amoxicilina e Clavulanato de Potássio/farmacocinética , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Clavulânico/administração & dosagem , Ácido Clavulânico/farmacocinética , Ácido Clavulânico/farmacologia , Ácido Clavulânico/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Meropeném , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/normas , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estreptomicina/farmacologia , Tienamicinas/administração & dosagem , Tienamicinas/farmacocinética , Tienamicinas/farmacologia , Tienamicinas/uso terapêutico , Resultado do Tratamento , Tuberculose Pulmonar/microbiologia , beta-Lactamas/administração & dosagem , beta-Lactamas/farmacocinética , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
7.
Neurobiol Pain ; 14: 100136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099276

RESUMO

The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following in vivo evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund's Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans. In the phase 1 study in healthy subjects, the safety profiles of single doses of REGN5069 up to 3000 mg (intravenous) or 600 mg (subcutaneous) were comparable to placebo; PK were consistent with a monoclonal antibody exhibiting target-mediated disposition. In the phase 2 study in patients with OA knee pain, two doses of REGN5069 (100 mg or 1000 mg intravenous every 4 weeks) for 8 weeks failed to achieve the 12-week primary and secondary efficacy endpoints relative to placebo. In addition to possible differences in GFRα3 biology between mice and humans, we highlight here differences in experimental parameters that could have contributed to a different profile of efficacy in mouse models versus human OA pain. Additional research is required to more fully evaluate any potential role of GFRα3 in human pain.

8.
Antimicrob Agents Chemother ; 56(6): 3054-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22470118

RESUMO

Coadministration of moxifloxacin and rifampin was evaluated in a murine model of Mycobacterium tuberculosis pulmonary infection to determine whether the finding of antagonism documented in a hollow-fiber infection model could be recapitulated in vivo. Colony counts were followed in a no-treatment control group, groups administered moxifloxacin or rifampin monotherapy, and a group administered a combination of the two agents. Following 18 days of once-daily oral administration to mice infected with M. tuberculosis, there was a reduction in the plasma exposure to rifampin that decreased further when rifampin was coadministered with moxifloxacin. Pharmacodynamic analysis demonstrated a mild antagonistic interaction between moxifloxacin and rifampin with respect to cell kill in the mouse model for tuberculosis (TB). No emergence of resistance was noted over 28 days of therapy, even with monotherapy. This was true even though one of the agents in the combination (moxifloxacin) induces error-prone replication. The previously noted antagonism with respect to cell kill shown in the hollow-fiber infection model was recapitulated in the murine TB lung model, although to a lesser extent.


Assuntos
Antituberculosos/uso terapêutico , Compostos Aza/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Quinolinas/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Compostos Aza/administração & dosagem , Compostos Aza/farmacocinética , Fluoroquinolonas , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Rifampina/administração & dosagem , Rifampina/farmacocinética , Tuberculose Pulmonar/microbiologia
9.
Front Pharmacol ; 13: 817276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370711

RESUMO

Risperidone is approved to treat schizophrenia in adolescents and autistic disorder and bipolar mania in children and adolescents. It is also used off-label in younger children for various psychiatric disorders. Several population pharmacokinetic models of risperidone and 9-OH-risperidone have been published. The objectives of this study were to assess whether opportunistically collected pediatric data can be used to evaluate risperidone population pharmacokinetic models externally and to identify a robust model for precision dosing in children. A total of 103 concentrations of risperidone and 112 concentrations of 9-OH-risperidone, collected from 62 pediatric patients (0.16-16.8 years of age), were used in the present study. The predictive performance of five published population pharmacokinetic models (four joint parent-metabolite models and one parent only) was assessed for accuracy and precision of the predictions using statistical criteria, goodness of fit plots, prediction-corrected visual predictive checks (pcVPCs), and normalized prediction distribution errors (NPDEs). The tested models produced similarly precise predictions (Root Mean Square Error [RMSE]) ranging from 0.021 to 0.027 nmol/ml for risperidone and 0.053-0.065 nmol/ml for 9-OH-risperidone). However, one of the models (a one-compartment mixture model with clearance estimated for three subpopulations) developed with a rich dataset presented fewer biases (Mean Percent Error [MPE, %] of 1.0% vs. 101.4, 146.9, 260.4, and 292.4%) for risperidone. In contrast, a model developed with fewer data and a more similar population to the one used for the external evaluation presented fewer biases for 9-OH-risperidone (MPE: 17% vs. 69.9, 47.8, and 82.9%). None of the models evaluated seemed to be generalizable to the population used in this analysis. All the models had a modest predictive performance, potentially suggesting that sources of inter-individual variability were not entirely captured and that opportunistic data from a highly heterogeneous population are likely not the most appropriate data to evaluate risperidone models externally.

10.
Clin Pharmacokinet ; 61(2): 307-320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617262

RESUMO

BACKGROUND AND OBJECTIVE: While one in five children in the USA are now obese, and more than three-quarters receive at least one drug during childhood, there is limited dosing guidance for this vulnerable patient population. Physiologically based pharmacokinetic modeling can bridge the gap in the understanding of how pharmacokinetics, including drug distribution and clearance, changes with obesity by incorporating known obesity-related physiological changes in children. The objective of this study was to develop a virtual population of children with obesity to enable physiologically based pharmacokinetic modeling, then use the novel virtual population in conjunction with previously developed models of clindamycin and trimethoprim/sulfamethoxazole to better understand dosing of these drugs in children with obesity. METHODS: To enable physiologically based pharmacokinetic modeling, a virtual population of children with obesity was developed using national survey, electronic health record, and clinical trial data, as well as data extracted from the literature. The virtual population accounts for key obesity-related changes in physiology relevant to pharmacokinetics, including increased body size, body composition, organ size and blood flow, plasma protein concentrations, and glomerular filtration rate. The virtual population was then used to predict the pharmacokinetics of clindamycin and trimethoprim/sulfamethoxazole in children with obesity using previously developed physiologically based pharmacokinetic models. RESULTS: Model simulations predicted observed concentrations well, with an overall average fold error of 1.09, 1.24, and 1.53 for clindamycin, trimethoprim, and sulfamethoxazole, respectively. Relative to children without obesity, children with obesity experienced decreased clindamycin and trimethoprim/sulfamethoxazole weight-normalized clearance and volume of distribution, and higher absolute doses under recommended pediatric weight-based dosing regimens. CONCLUSIONS: Model simulations support current recommended weight-based dosing in children with obesity for clindamycin and trimethoprim/sulfamethoxazole, as they met target exposure despite these changes in clearance and volume of distribution.


Assuntos
Clindamicina , Obesidade , Composição Corporal , Criança , Taxa de Filtração Glomerular , Humanos , Modelos Biológicos , Obesidade/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/farmacocinética
11.
Int J Infect Dis ; 122: 585-592, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788416

RESUMO

OBJECTIVES: A phase 1, double-blind, placebo-controlled trial was conducted to evaluate the safety, tolerability, and exploratory efficacy of repeat monthly doses of subcutaneous (SC) casirivimab and imdevimab (CAS+IMD) in uninfected adult volunteers. METHODS: Participants were randomized (3:1) to SC CAS+IMD 1200 mg or placebo every 4 weeks for up to six doses. Primary and secondary end points evaluated safety, pharmacokinetics, and immunogenicity. Exploratory efficacy was evaluated by the incidence of COVID-19 or SARS-CoV-2 seroconversion. RESULTS: In total, 969 participants received CAS+IMD. Repeat monthly dosing of SC CAS+IMD led to a 92.4% relative risk reduction in clinically defined COVID-19 compared with placebo (3/729 [0.4%] vs 13/240 [5.4%]; odds ratio 0.07 [95% CI 0.01-0.27]), and a 100% reduction in laboratory-confirmed COVID-19 (0/729 vs 10/240 [4.2%]; odds ratio 0.00). Development of anti-drug antibodies occurred in a small proportion of participants (<5%). No grade ≥3 injection-site reactions (ISRs) or hypersensitivity reactions were reported. Slightly more participants reported treatment-emergent adverse events with CAS+IMD (54.9%) than with placebo (48.3%), a finding that was due to grade 1-2 ISRs. Serious adverse events were rare. No deaths were reported in the 6-month treatment period. CONCLUSION: Repeat monthly administration of 1200 mg SC CAS+IMD was well-tolerated, demonstrated low immunogenicity, and showed a substantial risk reduction in COVID-19 occurrence.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Adulto , Anticorpos Monoclonais Humanizados , COVID-19/prevenção & controle , Método Duplo-Cego , Humanos , SARS-CoV-2
12.
Clin Pharmacokinet ; 60(12): 1591-1604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34155614

RESUMO

BACKGROUND: Meropenem is a broad-spectrum carbapenem antibiotic approved by the US Food and Drug Administration for use in pediatric patients, including treating complicated intra-abdominal infections in infants < 3 months of age. The impact of maturation in glomerular filtration rate and tubular secretion by renal transporters on meropenem pharmacokinetics, and the effect on meropenem dosing, remains unknown. We applied physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of meropenem in preterm and term infants. METHODS: An adult meropenem PBPK model was developed in PK-Sim® (Version 8) and scaled to infants accounting for renal transporter ontogeny and glomerular filtration rate maturation. The PBPK model was evaluated using 645 plasma concentrations from 181 infants (gestational age 23-40 weeks; postnatal age 1-95 days). The PBPK model-based simulations were performed to evaluate meropenem dosing in the product label for infants < 3 months of age treated for complicated intra-abdominal infections. RESULTS: Our model predicted plasma concentrations in infants in agreement with the observed data (average fold error of 0.90). The PBPK model-predicted clearance in a virtual infant population was successfully able to capture the post hoc estimated clearance of meropenem in this population, estimated by a previously published model. For 90% of virtual infants, a 4-mg/L target plasma concentration was achieved for > 50% of the dosing interval following product label-recommended dosing. CONCLUSIONS: Our PBPK model supports the meropenem dosing regimens recommended in the product label for infants <3 months of age.


Assuntos
Antibacterianos , Infecções Intra-Abdominais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Taxa de Filtração Glomerular , Humanos , Lactente , Recém-Nascido , Rim , Meropeném , Pessoa de Meia-Idade , Modelos Biológicos , Adulto Jovem
13.
PLoS One ; 16(7): e0253852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34255797

RESUMO

Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Histidina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Metabolômica , Purinas/metabolismo , Pirimidinas/metabolismo , Ratos , Ratos Transgênicos
14.
Bioanalysis ; 13(24): 1827-1836, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743612

RESUMO

Aim: In response to the COVID-19 pandemic, Regeneron developed the anti-SARS-CoV-2 monoclonal antibody cocktail, REGEN-COV® (RONAPREVE® outside the USA). Drug concentration data was important for determination of dose, so a two-part bioanalytical strategy was implemented to ensure the therapy was rapidly available for use. Results & methodology: Initially, a liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) assay, was used to analyze early-phase study samples. Subsequently, a validated electrochemiluminescence (ECL) immunoassay was implemented for high throughput sample analysis for all samples. A comparison of drug concentration data from the methods was performed which identified strong linear correlations and for Bland-Altman, small bias. In addition, pharmacokinetic data from both methods produced similar profiles and parameters. Discussion & conclusion: This novel bioanalytical strategy successfully supported swift development of a critical targeted therapy during the COVID-19 public health emergency.


Assuntos
Anticorpos Monoclonais/análise , COVID-19/terapia , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , SARS-CoV-2/imunologia , Anticorpos Monoclonais/uso terapêutico , COVID-19/virologia , Técnicas Eletroquímicas , Humanos , Luminescência
15.
Sci Rep ; 10(1): 2359, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047189

RESUMO

The effects of vitamin A and/or vitamin D deficiency were studied in an Arf-/- BCR-ABL acute lymphoblastic leukemia murine model. Vitamin D sufficient mice died earlier (p = 0.003) compared to vitamin D deficient (VDD) mice. Vitamin A deficient (VAD) mice fared worst with more rapid disease progression and decreased survival. Mice deficient for vitamins A and D (VADD) had disease progression similar to VAD mice. Regulatory T cells, previously shown to associate with poor BCR-ABL leukemia control, were present at higher frequencies among CD4+ splenocytes of vitamin A deficient vs. sufficient mice. In vitro studies demonstrated 1,25-dihydroxyvitamin D (1,25(OH)2VD3) increased the number of BCR-ABL ALL cells only when co-cultured with bone marrow stroma. 1,25(OH)2VD3 induced CXCL12 expression in vivo and in vitro in stromal cells and CXCL12 increased stromal migration and the number of BCR-ABL blasts. Vitamin D plus leukemia reprogrammed the marrow increasing production of collagens, potentially trapping ALL blasts. Vitamin A (all trans retinoic acid, ATRA) treated leukemic cells had increased apoptosis, decreased cells in S-phase, and increased cells in G0/G1. ATRA signaled through the retinoid X receptor to decrease BCR-ABL leukemic cell viability. In conclusion, vitamin A and D deficiencies have opposing effects on mouse survival from BCR-ABL ALL.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vitamina A/metabolismo , Vitamina D/metabolismo , Animais , Apoptose , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores X de Retinoides/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Vitamina A/genética , Vitamina A/farmacologia , Vitamina D/genética , Vitamina D/farmacologia
16.
J Med Chem ; 57(11): 4889-905, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24809953

RESUMO

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.


Assuntos
Antituberculosos/síntese química , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/síntese química , Inibidores da Topoisomerase II/síntese química , Doença Aguda , Administração Oral , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Doença Crônica , DNA Girase/genética , DNA Girase/metabolismo , Farmacorresistência Bacteriana , Canal de Potássio ERG1 , Fluoroquinolonas/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/enzimologia , Piperidinas/farmacocinética , Piperidinas/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacocinética , Inibidores da Topoisomerase II/farmacologia , Tuberculose Pulmonar/tratamento farmacológico
17.
Eur J Pharm Sci ; 49(1): 33-8, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23395915

RESUMO

The discovery of novel therapeutics for the treatment of tuberculosis involves routine testing in a mouse model over four weeks of daily dosing with test compounds. In this model, daily oral administration of rifampin (10 mg/kg) showed significantly lower plasma exposure on day 5 compared to day 1. The absence of PXR-mediated induction of mouse Cyp3a isoforms was confirmed in the present study by incubating liver microsomes prepared from control and rifampin treated mice with probe substrates of CYP3A. To test whether the reduction in exposure was due to Pgp-mediated efflux, verapamil, a known Pgp inhibitor, was dosed to the rifampin pre-treated mice which led to an increase in exposure to that obtained after a single dose of rifampin, suggesting the role of Pgp induction in reducing exposure to rifampin. To further confirm Pgp induction in rifampin treated mice, digoxin, a known substrate of Pgp, was administered to the rifampin pre-treated mice, and a significant drop in the digoxin exposure was observed compared to the control group. Collectively, our results show that repeated administration of rifampin in mice leads to a reduction in oral exposure due to induction of Pgp-mediated efflux of rifampin, and not via induction of CYP3A isoforms.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Rifampina/administração & dosagem , Rifampina/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Rifampina/sangue , Fatores de Tempo
18.
J Med Chem ; 56(21): 8834-48, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24088190

RESUMO

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 µM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Assuntos
Antituberculosos/farmacologia , DNA Girase/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Tuberculose/tratamento farmacológico , Ureia/farmacologia , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Piridinas/administração & dosagem , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/química , Ureia/análogos & derivados , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA