Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cell ; 69(3): 493-504.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358080

RESUMO

Plant pattern recognition receptors (PRRs) perceive microbial and endogenous molecular patterns to activate immune signaling. The cytoplasmic kinase BIK1 acts downstream of multiple PRRs as a rate-limiting component, whose phosphorylation and accumulation are central to immune signal propagation. Previous work identified the calcium-dependent protein kinase CPK28 and heterotrimeric G proteins as negative and positive regulators of BIK1 accumulation, respectively. However, mechanisms underlying this regulation remain unknown. Here we show that the plant U-box proteins PUB25 and PUB26 are homologous E3 ligases that mark BIK1 for degradation to negatively regulate immunity. We demonstrate that the heterotrimeric G proteins inhibit PUB25/26 activity to stabilize BIK1, whereas CPK28 specifically phosphorylates conserved residues in PUB25/26 to enhance their activity and promote BIK1 degradation. Interestingly, PUB25/26 specifically target non-activated BIK1, suggesting that activated BIK1 is maintained for immune signaling. Our findings reveal a multi-protein regulatory module that enables robust yet tightly regulated immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Citoplasma , Citosol , Regulação da Expressão Gênica de Plantas/genética , Homeostase , Fosforilação , Imunidade Vegetal/fisiologia , Proteínas de Plantas , Transdução de Sinais , Fatores de Transcrição
2.
Cell Host Microbe ; 27(4): 601-613.e7, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32272078

RESUMO

Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.


Assuntos
Arabidopsis/metabolismo , Isotiocianatos/farmacologia , Pseudomonas syringae/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Proteínas de Bactérias/efeitos dos fármacos , Cisteína/efeitos dos fármacos , Cisteína/metabolismo , Resistência à Doença , Regulação Bacteriana da Expressão Gênica , Isotiocianatos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Metabolismo Secundário , Sulfóxidos , Fatores de Transcrição/efeitos dos fármacos , Sistemas de Secreção Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA