Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Vet Res ; 20(1): 167, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689278

RESUMO

Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through ß-catenin and mTOR pathways.


Assuntos
Arginina , Diferenciação Celular , Proliferação de Células , Serina-Treonina Quinases TOR , Trofoblastos , beta Catenina , Animais , Arginina/farmacologia , Arginina/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Suínos , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular/efeitos dos fármacos , beta Catenina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Linhagem Celular
2.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39337442

RESUMO

Chlorogenic acid (CGA) is a natural polyphenol with potent antioxidant and anti-inflammatory activities. However, the exact role of it in regulating intestinal health under oxidative stress is not fully understood. This study aims to investigate the effects of dietary CGA supplementation on the intestinal health of weaned piglets under oxidative stress, and to explore its regulatory mechanism. Twenty-four piglets were randomly divided into two groups and fed either a basal diet (CON) or a basal diet supplemented with 200 mg/kg CGA (CGA). CGA reduced the diarrhea rate, increased the villus height in the jejunum, and decreased the crypt depth in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Moreover, CGA increased the protein abundance of Claudin-1, Occludin, and zonula occludens (ZO)-1 in the jejunum and ileum (p < 0.05). In addition, CGA increased the mRNA expression of pBD2 in the jejunum, and pBD1 and pBD2 in the ileum (p < 0.05). The results of 16S rRNA sequencing showed that CGA altered the ileal microbiota composition and increased the relative abundance of Lactobacillus reuteri and Lactobacillus pontis (p < 0.05). Consistently, the findings suggested that the enhancement of the intestinal barrier in piglets was associated with increased concentrations of T-AOC, IL-22, and sIgA in the serum and T-AOC, T-SOD, and sIgA in the jejunum, as well as T-AOC and CAT in the ileum caused by CGA (p < 0.05). Meanwhile, CGA decreased the concentrations of MDA, IL-1ß, IL-6, and TNF-α in the serum and jejunum and IL-1ß and IL-6 in the ileum (p < 0.05). Importantly, this study found that CGA alleviated intestinal inflammation and oxidative stress in the piglets by inhibiting the TLR4/NF-κB signaling pathway and activating the Nrf2 signaling pathway. These findings showed that CGA enhances the intestinal health of weaned piglets by inhibiting the TLR4/NF-κB pathway and activating the Nrf2 pathway.


Assuntos
Ácido Clorogênico , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Desmame , Animais , Ácido Clorogênico/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Suínos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
3.
Anim Biotechnol ; 34(4): 921-934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34871537

RESUMO

This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of ß-adrenergic receptor (ß-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of ß-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, ß-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Receptores Ativados por Proliferador de Peroxissomo , Animais , Suínos , Bucladesina/farmacologia , Bucladesina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Tecido Adiposo/metabolismo , Suplementos Nutricionais
4.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955466

RESUMO

(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.


Assuntos
Aquaporinas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Niacina , Animais , Aquaporinas/genética , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Intestinos , Niacina/farmacologia , RNA Mensageiro , Suínos , Regulação para Cima
5.
J Sci Food Agric ; 102(13): 5913-5924, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35437780

RESUMO

BACKGROUND: This study aimed to evaluate the effects of sub-therapeutic antibiotic (STA) administration and its subsequent withdrawal on the body tissue deposition, gut microbiota, and metabolite profiles of piglets. The piglets in the experimental group were fed with STA (30 mg kg-1 bacitracin methylene disalicylate, 75 mg kg-1 chlortetracycline, 300 mg kg-1 calcium oxytetracycline) for 14 days and the target bodyweight of the withdrawal period was 25 kg. RESULTS: The experiment was divided into two periods: the administration period and the withdrawal period. The results showed that STA did not improve piglets' growth performance during the two periods. Piglets treated with STA had lower body water deposition during the withdrawal period and tended to increase body lipid deposition during the withdrawal period and the whole period in comparison with the piglets in the control group. It was found that STA markedly altered the colonic microbiota and their metabolites in the piglets. Sub-therapeutic antibiotics were initially effective in decreasing the abundance of pathogenic bacteria during the administration period; however, STA could not continue the effect during the withdrawal period, leading to a rebound of pathogenic bacteria such as Alloprevotella and the increased abundance of other pathogenic bacteria like Oscillibacter. Remarkably, STA treatment decreased Blautia abundance. This bacterium plays a potential protective role against obesity. Metabolomic analysis indicated that STA mainly altered amino acid metabolism, lipid metabolism, and carbohydrate metabolism during the two periods. Spearman's correlation analysis showed that the gut microbiota was highly correlated with microbial metabolite changes. CONCLUSION: These results suggest that early STA administration may alter body tissue deposition later in life by reshaping the gut microbiota and their metabolite profiles. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Bactérias/genética , Colo/microbiologia , Suínos , Desmame
6.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 78-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34106488

RESUMO

Data from 655 treatments of 116 studies were used in a meta-analysis to determine the daily digestible energy (DE), metabolizable energy (ME) and net energy (NE) intake of Chinese growing-finishing pigs, and to predict feed efficiency responses to change in dietary DE, ME and NE. Three alternative functions (i.e., polynomial, Bridges and asymptotic function) were employed for fitting daily DE, ME or NE intakes to mean body weight. The results showed that the three models from the current study provided reasonable fit (all R2  > 0.83) for the energy intake data. However, under the same energy system, the polynomial function had the smallest Akaike's information criteria (AIC) and residual standard deviation (RSD), followed by Bridges and asymptotic functions. The three model-generated energy intakes of growing pigs were significantly less than that of the Chinese Feeding Standard of Swine, but similar to that of the National Research Council (2012), while the values of finishing pigs were greater than both standards. Compared with those that predict feed efficiency based on DE or ME, the equation with NE as a predictor had the minimized AIC and RSD. It was also found that feed efficiency increased with increasing dietary energy density (DED), but this response varied with pig body weight, and the lighter pigs were more sensitive to DED than heavier pigs.


Assuntos
Ração Animal , Metabolismo Energético , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Dieta/veterinária , Ingestão de Energia , Suínos
7.
J Nutr ; 151(1): 20-29, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245135

RESUMO

BACKGROUND: Whether dietary choline and bile acids affect lipid use via gut microbiota is unclear. OBJECTIVES: This study aimed to investigate the effect of choline and bile acids on growth performance, lipid use, intestinal immunology, gut microbiota, and bacterial metabolites in weaned piglets. METHODS: A total of 128 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 8.21 ± 0.20 kg body weight (BW)] were randomly allocated to 4 treatments (8 replicate pens per treatment, each pen containing 2 males and 2 females; n = 32 per treatment) for 28 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 597 mg choline/kg (C), 500 mg bile acids/kg (BA) or both (C + BA) in a 2 × 2 factorial design. Growth performance, intestinal function, gut microbiota, and metabolites were determined. RESULTS: Compared with diets without choline, choline supplementation increased BW gain (6.13%), average daily gain (9.45%), gain per feed (8.18%), jejunal lipase activity (60.2%), and duodenal IL10 gene expression (51%), and decreased the mRNA abundance of duodenal TNFA (TNFα) (40.7%) and jejunal toll-like receptor 4 (32.9%) (P < 0.05); additionally, choline increased colonic butyrate (29.1%) and the abundance of Lactobacillus (42.3%), while decreasing the bile acid profile (55.8% to 57.6%) and the abundance of Parabacteroides (75.8%), Bacteroides (80.7%), and unidentified-Ruminococcaceae (32.5%) (P ≤ 0.05). Compared with diets without BA, BA supplementation decreased the mRNA abundance of colonic TNFA (37.4%), NF-κB p65 (42.4%), and myeloid differentiation factor 88 (42.5%) (P ≤ 0.01); BA also increased colonic butyrate (20.9%) and the abundance of Lactobacillus (39.7%) and Faecalibacterium (71.6%) and decreased that of Parabacteroides (67.7%) (P < 0.05). CONCLUSIONS: Choline supplementation improved growth performance and prevented gut inflammation in weaned piglets by altering gut microbiota and lipid metabolism. BA supplementation suppressed intestinal inflammation with no effect on growth performance, which was associated with changed gut microbiota and metabolites.


Assuntos
Colina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/veterinária , Enteropatias/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Suínos/crescimento & desenvolvimento , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/farmacologia , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Enteropatias/prevenção & controle , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças dos Suínos/prevenção & controle , Transcriptoma
8.
Biol Reprod ; 101(1): 126-137, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985894

RESUMO

Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.


Assuntos
Ácidos Graxos/metabolismo , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Leite/efeitos dos fármacos , Suínos , Valina/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Células Cultivadas , Suplementos Nutricionais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lactação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Leite/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem
9.
Amino Acids ; 51(10-12): 1547-1559, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31720834

RESUMO

Mammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts. The results showed that supplementation of valine during late pregnancy significantly increased content of protein (P < 0.01), fat (P = 0.02) and solids-non-fat (P = 0.04) in colostrum. Our in vitro study also confirmed that valine supplementation increased protein synthesis and cell proliferation in porcine mammary epithelial cells (PMEC). Furthermore, these changes were associated with elevated phosphorylation levels of mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (S6) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) in valine-supplemented cells, which could be effectively blocked by the antagonists of mTOR. These findings indicated that valine enhanced mammary gland development and protein synthesis in colostrum via the mTOR signaling pathway. These results, using an in vivo and in vitro model, helped to understand the beneficial effects of dietary valine supplementation on gilts.


Assuntos
Colostro/química , Suplementos Nutricionais , Glândulas Mamárias Animais/metabolismo , Biossíntese de Proteínas , Sus scrofa/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem , Ração Animal/análise , Animais , Linhagem Celular , Proliferação de Células , Dieta/veterinária , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Fosforilação , Gravidez , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Valina/metabolismo
10.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979040

RESUMO

This study aimed to explore the effect of L-arginine on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in IPEC-2 cells. We found that the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), cluster of differentiation 14 (CD14), nuclear factor-kappaBp65 (NF-κBp65), chemokine-8 (IL-8), tumor necrosis factor (TNF-α) and chemokine-6 (IL-6) mRNA were significantly increased by LPS. Exposure to LPS induced oxidative stress as reactive oxygen species (ROS) and malonaldehyde (MDA) production were increased while glutathione peroxidase (GSH-Px) were decreased in LPS-treated cells compared to those in the control. LPS administration also effectively induced cell growth inhibition through induction of G0/G1 cell cycle arrest. However, compared with the LPS group, cells co-treatment with L-arginine effectively increased cell viability and promoted the cell cycle into the S phase; L-arginine exhibited an anti-inflammatory effect in alleviating inflammation induced by LPS by reducing the abundance of TLR4, MyD88, CD14, NF-κBp65, and IL-8 transcripts. Cells treated with LPS+L-arginine significantly enhanced the content of GSH-Px, while they decreased the production of ROS and MDA compared with the LPS group. Furthermore, L-arginine increased the activity of arginase-1 (Arg-1), while Arg-1 inhibitor abolished the protection of arginine against LPS-induced inflammation and oxidative stress. Taken together, these results suggested that L-arginine exerted its anti-inflammatory and antioxidant effects to protect IPEC-J2 cells from inflammatory response and oxidative stress challenged by LPS at least partly via the Arg-1 signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Arginase/imunologia , Arginina/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inflamação/imunologia , Transdução de Sinais/efeitos dos fármacos , Suínos
11.
Animals (Basel) ; 14(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39335277

RESUMO

The aim of this study was to determine the optimal SID Arg: Lys ratio for maximizing the reproductive performance, immunity and biochemical parameters of sows during gestation, the colostrum composition, and the performance of their offspring. A total of 174 multiparous sows were randomly allocated to five treatment groups varying in dietary SID Arg: Lys ratios (0.91, 1.02, 1.14, 1.25 and 1.38) through modification of the levels of Arg or alanine supplementation (the total level of nitrogen was the same in all treatments). The results showed that increasing the dietary SID Arg: Lys ratio increased the number of piglets born alive (p < 0.05, linear and quadratic). The number of stillborn piglets, the birth weight variation of born alive piglets, the birth interval (p < 0.05, linear and quadratic) and the number of mummies (p < 0.05, quadratic) reduced with increasing the dietary SID Arg: Lys ratio. Broken-line regression analysis indicated that the optimal SID Arg: Lys ratio requirement for gestating sows to maximize the number of piglets born alive was 1.25. The content of non-fat solid, total solid, protein, and energy in colostrum increased linearly and quadratically (p < 0.05) with increasing dietary SID Arg: Lys ratio. Additionally, when increasing the dietary SID Arg: Lys ratio, the concentration of IgA (p < 0.05, quadratic) and IgM (p < 0.05, linear and quadratic) of plasma increased at day 90 of gestation; IgG (p < 0.05, linear and quadratic) concentration increased at day 110 of gestation of sows. The dietary SID Arg: Lys ratio had an increasing effect (p < 0.05, linear and quadratic) on plasma insulin levels at day 90 of gestation. Furthermore, there were increases in plasma concentrations of nitric oxide and ornithine at day 110 of gestation, Arg at day 90 and 110 of gestation (p < 0.05, linear and quadratic) and total protein at day 110 of gestation (p < 0.05, linear) with increasing dietary SID Arg: Lys ratio. The results of our study indicated that increases in the dietary SID Arg: Lys ratio during gestation resulted in an increase in the number of piglets born alive, a decrease in birth intervals, and an improvement in immunity and colostrum composition. The optimal SID Arg: Lys ratio for gestating sows to maximize the number of piglets born alive was 1.25.

12.
Anim Nutr ; 17: 36-48, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38464951

RESUMO

Previous studies have shown that maternal resveratrol improved growth performance and altered the microbial composition of suckling piglets under hot summer conditions. However, it remains unclear how maternal resveratrol improves growth performance of suckling piglets during high summer temperatures. A total of 20 sows (Landrace × Large White; three parity) were randomly assigned to 2 groups (with or without 300 mg/kg resveratrol) from d 75 of gestation to d 21 of lactation during high ambient temperatures (from 27 to 30 °C). The results showed that maternal resveratrol supplementation increased total daily weight gain of piglets under hot summer conditions, which is consistent with previous studies. Furthermore, we found that maternal resveratrol improved the intestinal morphology and intestinal epithelial proliferation in suckling piglets. Dietary resveratrol supplementation affected the characteristics of exosome-derived microRNAs (miRNAs) in sow colostrum, as well as the genes targeted by differentially produced miRNAs. MiRNAs are concentrated in the tight junction pathway. As a result, the expression of intestinal tight junction proteins was increased in suckling piglets (P < 0.05). Notably, maternal resveratrol increased the intestinal secretory immunoglobulin A (sIgA) levels of suckling piglets via colostrum immunoglobin (P < 0.05), which could increase the abundance of beneficial microbiota to further increase the concentration of short chain fatty acids (SCFA) in suckling piglets' intestine (P < 0.05). Finally, our correlation analysis further demonstrated the positive associations between significantly differential intestinal microbiota, intestinal sIgA production and SCFA concentrations, as well as the positive relation between total daily weight gain and intestinal health of suckling piglets. Taken together, our findings suggested that maternal resveratrol could promote intestinal health to improve piglet growth during high summer temperatures, which might be associated with the immunoglobin and exosome-derived miRNAs in sows' colostrum.

13.
J Anim Sci Biotechnol ; 15(1): 11, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273345

RESUMO

Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.

14.
Front Vet Sci ; 11: 1321486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362303

RESUMO

Introduction: This study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs. Methods: A total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%. Results: Our findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1ß (IL-1ß), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05). Discussion: This study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.

15.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731358

RESUMO

The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25-50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn-soybean meal (CON), corn-soybean-miscellaneous meals (CSM), and corn-miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25-50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25-50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25-50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal.

16.
Int Immunopharmacol ; 124(Pt A): 110832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634449

RESUMO

Glutamine has anti-inflammatory properties as well as the ability to maintain the integrity of the intestinal barrier. In our previous study, we found that 1.0% glutamine promoted SIgA (secretory immunoglobulin A) synthesis in the gut via both T cell-dependent and non-dependent processes, as well as via the intestinal microbiota. The purpose of this study was to investigate whether the intestinal microbiota or microbial metabolites regulate SIgA synthesis. In the mouse model, supplementation with 1.0% glutamine had no significant effect on the intestinal microbiota, but KEGG function prediction showed the difference on microbiota metabolites. Therefore, in this study, untargeted metabolomics techniques were used to detect and analyze the metabolic changes of glutamine in intestinal luminal contents. Metabolomics showed that in the positive ion (POS) mode, a total of 1446 metabolic differentials (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were annotated in samples treated with glutamine-supplemented group compared to control group, of which 922 were up-regulated and 524 down-regulated. In the negative ion (NEG) mode, 370 differential metabolites (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were screened, of which 220 were up-regulated and 150 down-regulated. These differential metabolites mainly include bile secretion synthesis, ABC transporters, diterpenoids and other secondary metabolites. KEGG analysis showed that propionic acid metabolism, TCA cycle, endoplasmic reticulum protein processing, nitrogen metabolism and other metabolic pathways were active. The above metabolic pathways and differential metabolites have positive effects on intestinal development and intestinal immunity, and combined with our previous studies, we conclude that glutamine supplementation can may maintain intestinal homeostasis and improving intestinal immunity through intestinal microbial metabolites.

17.
Food Sci Nutr ; 11(4): 1736-1746, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051345

RESUMO

The high incidence of oxidative stress in sows during late gestation and lactation affects mammary gland health, milk yield, and milk quality. Recently, we found that supplementing maternal diets with 1% taurine improved antioxidant capability and enhanced growth performance in offspring; however, the mechanisms underlying these are unknown. This study aimed to investigate the cytoprotective effects and the mechanism of taurine in mitigating oxidative stress in porcine mammary epithelial cells (PMECs). PMECs were pretreated with 0-2.0 mM taurine for 12 h and then subjected to oxidative injury with 500 µM hydrogen peroxide (H2O2). Pretreatment with taurine attenuated decreased cell viability, enhanced superoxide dismutase, and reduced the intracellular reactive oxygen species accumulation after H2O2 exposure. Taurine also prevented H2O2-induced endoplasmic reticulum stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) was essential to the cytoprotective effects of taurine on PMECs, as Nrf2 knockdown significantly inhibited taurine-induced cytoprotection against oxidative stress. Moreover, we confirmed that Nrf2 induction by taurine was mediated through the inactivation of the p38/MAPK pathway. Overall, taurine supplementation has beneficial effects on redox balance regulation and may protect against oxidative stress in lactating animals.

18.
Front Microbiol ; 14: 1181519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180229

RESUMO

This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment.

19.
Animals (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003117

RESUMO

This study was carried out to investigate the effects of miscellaneous meal (rapeseed meal, cottonseed meal, and sunflower seed meal) as a replacement for soybean meal on growth performance, apparent nutrient digestibility, serum biochemical parameters, serum free amino acid contents, and gut microbiota of 50-75 kg growing pigs. A total of 54 healthy growing pigs (Duroc × Landrace × Yorkshire) with initial body weights (BWs) of 50.64 ± 2.09 kg were randomly divided into three treatment groups, which included the corn-soybean meal group (CON), corn-soybean-miscellaneous meal group (CSM), and corn-miscellaneous meal group (CM). Each treatment included six replicates with three pigs in each replicate. Dietary protein levels were maintained at 15% in all three treatment groups. Additional rapeseed meals, cottonseed meals, and sunflower seed meals were added to the CSM group's meals to partially replace the 10.99% soybean meal in the CON group in a 1:1:1 ratio. Pigs in the CM group were fed a diet with a mixture of miscellaneous meals (7.69% rapeseed meal, 7.69% cottonseed meal, and 7.68% sunflower seed meal) to totally replace soybean meal. Our findings revealed that there was no significant impact of replacing soybean meal with miscellaneous meal on the ADG (average daily gain), ADFI (average daily feed intake), or F/G (feed-to-gain ratio) (p > 0.05) of growing pigs weighing 50-75 kg, nor on the crude protein, crude fat, or gross energy (p > 0.05) of the diet. On the other hand, compared to the CON group, the CM group exhibited significantly elevated serum alanine aminotransferase (ALT) and triglyceride (TG) levels (p < 0.05), while urea levels were significantly reduced (p < 0.05). No significant effect was observed on the serum free amino acid contents (p > 0.05) following the substitution of soybean meal with miscellaneous meal. A t-test analysis indicated that compared with the CON group, the CM group exhibited a significantly diminished abundance of Euryachaeota at the phylum level and augmented abundance of Desulfobacterota at the genus level. This study demonstrated that the miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower seed meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, apparent nutrient digestibility, serum amino acid content, or diversity of fecal microbiota in 50-75 kg growing pigs. These results can be helpful in developing further miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower seed meal) as functional alternative feed ingredients to soybean meal in pig diets.

20.
Amino Acids ; 42(6): 2207-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21691753

RESUMO

Suboptimal embryonic/fetal survival and growth remains a significant problem in mammals. Using a swine model, we tested the hypothesis that dietary L-arginine supplementation during gestation may improve pregnancy outcomes through enhancing placental growth and modulating hormonal secretions. Gestating pigs (Yorkshire×Landrace, n=108) were assigned randomly into two groups based on parity and body weight, representing dietary supplementation with 1.0% L-arginine-HCl or 1.7% L-alanine (isonitrogenous control) between days 22 and 114 of gestation. Blood samples were obtained from the ear vein on days 22, 40, 70 and 90 of gestation. On days 40, 70 and 90 of gestation, concentrations of estradiol in plasma were higher (P<0.05) in arginine-supplemented than in control sows. Moreover, arginine supplementation increased (P<0.05) the concentrations of arginine, proline and ornithine in plasma, but concentrations of urea or progesterone in plasma did not differ between the two groups of sows. Compared with the control, arginine supplementation increased (P<0.05) the total number of piglets by 1.31 per litter, the number of live-born piglets by 1.10 per litter, the litter birth weight for all piglets by 1.36 kg, and the litter birth weight for live-born piglets by 1.70 kg. Furthermore, arginine supplementation enhanced (P<0.05) placental weight by 16.2%. The weaning-to-estrus interval of sows was not affected by arginine supplementation during gestation. These results indicate that dietary arginine supplementation beneficially enhances placental growth and the reproductive performance of sows.


Assuntos
Arginina/farmacologia , Placenta/fisiologia , Prenhez/fisiologia , Alanina/farmacologia , Aminoácidos/sangue , Ração Animal , Animais , Peso ao Nascer , Suplementos Nutricionais , Estradiol/sangue , Feminino , Desenvolvimento Fetal , Feto , Aptidão Genética , Tamanho da Ninhada de Vivíparos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Gravidez , Progesterona/sangue , Suínos , Ureia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA